МУ по подготовке к теоретическому экзамену по курсу УМФ (1188233), страница 2
Текст из файла (страница 2)
4uu|t=0 = ex y 2 .§ ¤ ç¨ ¢ R3 (t > 0, (x, y, z) ∈ R3 ):8.3.9ut = ∆u,u|= x2 + y 2 + z 2 ;½ t=0ut = 2∆u,u|= sin x + sin y + cos z;½ t=0½ut = 4∆u,t = ∆u,8.9. 4uu|t=0 = sin x · sin y · cos z;u|t=0 = xy + z 2 .9. ¬¥è ï § ¤ ç ¤«ï ãà ¢¥¨ï£¨¯¥à¡®«¨ç¥áª®£® ¨«¨ ¯ à ¡®«¨ç¥áª®£® ⨯ ®â१ª¥. ਬ¥¥¨¥ ¬¥â®¤ ãàì¥.9.1{9.6: ) ¯¨á âì ®¡é¨© ¢¨¤ à¥è¥¨ï á«¥¤ãî饩 § ¤ 稢 ¢¨¤¥ äãªæ¨® «ì®£® àï¤ (äãªæ¨©, § ¢¨áïé¨å ®â x ¨§ ¢¨áïé¨å ®â t);¡) ª § âì ¥®¡å®¤¨¬ë¥ ãá«®¢¨ï £« ¤ª®áâì äãªæ¨© f (x),g(x), F (x, t);¢) ëç¨á«¨âì ¢ ñ¬ ¢á¥ äãªæ¨¨, § ¢¨áï騥 ®â x (äãªæ¨¨,§ ¢¨áï騥®â t, ¢ëç¨á«ïâì ¥ ¤®):½9.1.utt = a2 uxx , t > 0, 0 < x < π,u|t=0 = f (x), ut |t=0 = g(x), u|x=0 = 0 = ux |x=π ;99.2.9.3.9.4.9.5.9.6.½utt = 4uxx + 4u + cos t, t > 0, 0 < x < 1,u|= f (x), ut |t=0 = g(x), ux |x=0 = 0 = ux |x=1 ;½ t=04utt = uxx + F (x, t), t > 0, 0 < x < 2,½ u|t=0 = f (x), ut |t=0 = g(x), ux |x=0 = 0 = ux |x=2 ;utt = 9uxx + F (x, t), t > 0, 0 < x < 2,u|½ t=0 =2 f (x), ut |t=0 2=t g(x), u|x=0 = 0 = u|x=2 ;ut = a uxx − 3u + x e , t > 0, 0 < x < 1,u|½ t=0 = f (x), ux |x=0 = 0 = u|x=1 ;9ut = uxx + F (x, t), t > 0, 0 < x < 3,u|t=0 = f (x), ux |x=0 = u|x=3 = 0.10.
¬¥è ï § ¤ ç ¢ ¯àאַ㣮«ì®© ®¡« áâ¨.ਬ¥¥¨¥ ¬¥â®¤ ãàì¥.10.1{10.4: ) ¯¨á âì ®¡é¨© ¢¨¤ à¥è¥¨ï á«¥¤ãî饩 § ¤ 稢 ¢¨¤¥ äãªæ¨® «ì®£® àï¤ (äãªæ¨©, § ¢¨áïé¨å ®â x, § ¢¨áïé¨å ®â y ¨ § ¢¨áïé¨å ®â t),¡) ëç¨á«¨âì ¢ ñ¬ ¢á¥ äãªæ¨¨, § ¢¨áï騥 ®â x ¨ § ¢¨áï騥®â y (äãªæ¨¨, § ¢¨áï騥 ®â t ¢ëç¨á«ïâì ¥ ¤®):10.1.10.2.10.3.10.4. utt = a2 ∆u, t > 0, 0 < x < 1, 0 < y < 1,u|= 2xy, ut |t=0 = 0, t=0u| x=0 = u|x=1 = 0, u|y=0 = u|y=1 = 0; utt = 4∆u + xyt, t > 0, 0 < x < 1, 0 < y < π,u|t=0 = 0, ut |t=0 = y,½ ux |x=0 = ux |x=1 = 0, u|y=0 = u|y=π = 0;9ut = ∆u, t > 0, 0 < x < 1, 0 < y < 2,u|= x + y, u|x=0 = ux |x=1 = 0, u|y=0 = u|y=2 = 0;½ t=0ut = 25∆u, t > 0, 0 < x < π, 0 < y < 2π,u|t=0 = xy, ux |x=0 = u|x=π = 0, u|y=0 = uy |x=2π = 0.11.
à ¥¢ ï § ¤ ç ¤«ï ãà ¢¥¨ï í««¨¯â¨ç¥áª®£®â¨¯ .11.1. ®áâ ¢¨âì ¢ãâà¥îî (¢¥èîî) § ¤ çã ¨à¨å«¥ ¤«ïãà ¢¥¨ï ¯« á ¢ R3 , 㪠§ âì ãá«®¢¨ï, ¯à¨ ª®â®àëå ® ¨¬¥¥â à¥è¥¨ï.11.2. ®áâ ¢¨âì ¢ãâà¥îî (¢¥èîî) § ¤ çã ¥©¬ ¤«ïãà ¢¥¨ï ¯« á ¢ R3 , 㪠§ âì ãá«®¢¨ï, ¯à¨ ª®â®àëå ® ¨¬¥¥â à¥è¥¨¥.1011.3. ä®à¬ã«¨à®¢ âì ⥮६㠮 á।¥¬ ¤«ï £ ମ¨ç¥áª¨åäãªæ¨©, ®¡ï§ â¥«ì® ãª § âì ãá«®¢¨ï £« ¤ª®áâì äãªæ¨©.11.4. ä®à¬ã«¨à®¢ âì ¯à¨æ¨¯ ¬ ªá¨¬ã¬ ¬®¤ã«ï ¤«ï £ ମ¨ç¥áª¨å äãªæ¨©, ®¡ï§ â¥«ì® ãª § âì ¥®¡å®¤¨¬ë¥ ãá«®¢¨ï £« ¤ª®áâì äãªæ¨©.11.5.
ä®à¬ã«¨à®¢ âì ¯¥à¢ãî ¨ ¢â®àãî ä®à¬ã«ë ਠ, ®¡ï§ â¥«ì® ãª § âì ãá«®¢¨ï £« ¤ª®áâì äãªæ¨©.12. à ¥¢ ï § ¤ ç ¤«ï ãà ¢¥¨ï ¯« á ¢ ªà㣥.ਬ¥¥¨¥ ¬¥â®¤ ãàì¥.12.1{12.4: ¥è¥¨¥ á«¥¤ãî饩 § ¤ ç¨ § ¯¨á âì ¢ ¢¨¤¥ äãªæ¨® «ì®£® àï¤ (äãªæ¨©, § ¢¨áïé¨å ®â r ¨ § ¢¨áïé¨å ®âϕ) p¨ 㪠§ âì ¢ ñ¬ ®¡é¨© ¢¨¤ íâ¨å äãªæ¨© ((x, y) ∈ R2 , r == x½2 + y 2 , x = r cos ϕ, y = r sin ϕ):12.1.12.2.12.3.12.4.∆u = 0, r < R,u|= cos4 ϕ;½ r=R∆u = 0, r > 2,(u + 2ur )|r=2 = ϕ2 , |u||r=∞ < ∞;½∆u = 0, 1 < r < 2,u|= sin2 ϕ + cos3 ϕ, u|r=2 = 0;½ r=1∆u = 0, 2 < r < 4,u|r=2 = 0, ur |r=4 = ϕ.12.5{12.10:¥è¨âì á«¥¤ãî騥 § ¤ ç¨ ((x, y)p22= x + y , x = r cos ϕ, y = r sin ϕ):½12.5.12.6.12.7.12.8.12.9.∈ R2 , r =∆u = 0, r < 2,u|= 3 + sin ϕ;( r=2∆u = 0, r > 1,³´|u(r, ϕ)||r=∞ < ∞, ur |r=1 = sin ϕ + π4 ;½∆u = 0, r < R,(u + ur )|r=R = 2 cos ϕ;½∆u = 0, r > 2,u|= cos2 ϕ, |u(r, ϕ)||r=∞ < ∞;( r=2∆u = 0, r < 10, ³´(u + 3ur )|r=10 = cos ϕ − π6 ;1112.10.½∆u = 0, r > 3,ur |r=3 = 2 − sin2 ϕ, |u(r, ϕ)||r=∞ < ∞.13.
¬¥è ï ç «ì®-ªà ¥¢ ï § ¤ ç ¢ ªà㣥.ਬ¥¥¨¥ äãªæ¨© ¥áᥫï.13.1{13.4: ) ¥è¥¨¥ á«¥¤ãî饩 § ¤ ç¨ § ¯¨á âì ¢ ¢¨¤¥ äãªæ¨® «ì®£® àï¤ á à §¤¥«ñ묨 ¯¥à¥¬¥ë¬¨ (äãªæ¨©, § ¢¨áïé¨å ®â t, § ¢¨áïé¨å ®â r ¨ § ¢¨áïé¨å ®â ϕ);¡) 㪠§ âì ¢ ñ¬ ®¡é¨© ¢¨¤ äãªæ¨©, § ¢¨áïé¨å ®â r ¨ § ¢¨áïé¨å ®â ϕ (äãªæ¨¨, § ¢¨áï騥 ®â t, ¢ëç¨á«ïâì ¥ ¤®);¢) 㪠§ âì ¤¨ää¥à¥æ¨ «ì®¥ ãà ¢¥¨¥, ª®â®à®¬ã 㤮¢«¥â2¢®àï¥âp äãªæ¨ï ¥áᥫï J0 (x): (t > 0, (x, y) ∈ R ; r == x2 + y 2 ; x = r cos ϕ, y = r sin ϕ).½13.1.13.2.utt = a2 ∆u, t > 0, r < 1,u|= 0, u|t=0 = r2 sin ϕ, ut |t=0 = 0;( r=14utt = ∆u, t > 0, r ³< 1, ´(0)(0)u|r=1 = 0, u|t=0 = J0 µ1 r , ut |t=0 = 0, µ1| ¯®«®-¦¨â¥«ìë©®«ì äãªæ¨¨ J0 (x);(13.3.ut = 4∆u, t > 0, r <³ 2, ´(1)(1)u|r=2 = 0, u|t=0 = J1 µ2 2r sin ϕ, µ2| ¯®«®¦¨â¥«ì-ë© ®«ìäãªæ¨¨ J1 (x);(13.4.utt = ∆u, t > 0, r <³2,´³´(2)(0)u|r=2 = 0, u|t=0 = J0 µ1 2r , ut |t=0 J2 µ1 2r cos 2ϕ,| ¯®«®¦¨â¥«ìë© ®«ì äãªæ¨¨â¥«ìë© ®«ì J2 (x).(0)µ1J0 (x), µ1(2)| ¯®«®¦¨-14.
â¥£à «ìë¥ ãà ¢¥¨ï.14.1. âì ®¯à¥¤¥«¥¨ï ï¤à , ᮡá⢥®© äãªæ¨¨ u å à ªâ¥-à¨áâ¨ç¥áª®£® ç¨á« ¤«ï ¨â¥£à «ì®£® ®¯¥à â®à ।£®«ì¬ .14.2. «ï ¨â¥£à «ì®£® ®¯¥à â®à ।£®«ì¬ ¤ ® K(x, y),(x, y) ∈ R2 ; ) 㪠§ âì K ∗ (x, y);¡) 㪠§ âì, ï¥âáï «¨ K(x, y) íନ⮢ë¬;12¢) 㪠§ âì, ï¥âáï «¨ K(x, y) ¢ë஦¤¥ë¬:½K(x, y) = 1) x − y 3 x;4) ex+y2) xy − x2 y 2 ;5) sin(x − y);6) exy ;3) y cos x − sin y;7) cos(xy);18);x+y¾19).(x − y)314.3{14.7: á«¥¤ãîé¨å § ¤ ç å ¤ ® ¨â¥£à «ì®¥ ãà ¢¥¨¥;£) ¢ë¯¨á âì K(x, y);¤) ¢ë¯¨á âì ᮯàï¦ñ®¥ ®¤®à®¤®¥ ãà ¢¥¨¥;¥) 㪠§ âì ®¡é¨©ä®à¬ã«ë ¤«ï ¢ëç¨á«¥¨ï ϕ(x):R 1 ¢¨¤14.3. ϕ(x) = λ −1(xe−x sh y + sin xy 4 ) cos yϕ(y) dy + f (x);R14.4. ϕ(x) = λ R02 (xy − ex sh y)ϕ(y) dy + x3 ;14.5.
ϕ(x) = λ 01 sin(x+ 3y)ϕ(y) dy + cos x;R 2 ³ ex−y + sin x ´14.6. ϕ(x) = λ 1ϕ(y) dy + x2 ;xR³´114.7. ϕ(x) = λ −1xy + x +2 3y ϕ(y) dy + 2x.14.8. «ï ¨â¥£à «ì®£® ®¯¥à â®à ।£®«ì¬ ¤ ®:K(x, y) = 1 ((x, y) ∈ [0; 1]). ©â¨ ᮡáâ¢¥ë¥ äãªæ¨¨¨ å à ªâ¥à¨áâ¨ç¥áª¨¥ ç¨á« í⮣® ®¯¥à â®à .14.9{14.12: á«¥¤ãîé¨å § ¤ ç å ¤ ® ¨â¥£à «ì®¥ ãà ¢¥¨¥; ) ¢ë¯¨á âì K ∗ (x, y);¡) áä®à¬ã«¨à®¢ âì ⥮६ã ।£®«ì¬ ® ¥®¡å®¤¨¬®¬ ¨ ¤®áâ â®ç®¬ ãá«®¢¨¨ à §à¥è¨¬®á⨠í⮣® ãà ¢¥¨ï ¯à¨ ¤ ®© äãªæ¨¨â¥®à¥¬ã ।£®«ì¬ ):R 2 f (x) (âà¥âìîx14.9.
ϕ(x) = λ R0 (xy + e sh y)ϕ(y) dy + f (x);14.10. ϕ(x) = λ R01 cos(x + 3y)ϕ(y) dy + f (x);1 x−y14.11. ϕ(x) = λ −1e ϕ(y) dy + f (x);R −1 ³ cos(x − y) + sin x ´14.12. ϕ(x) = λ −2ϕ(y) dy + f (x).x1315. ¤ ç ᮡáâ¢¥ë¥ § ç¥¨ï ¨ ᮡá⢥ë¥äãªæ¨¨.15.1. ©â¨ ¢á¥ ᮡá⢥ë¥äãªæ¨¨ y(x) ¤«ï ®¯¥à â®à Ly =hi= −y 00 ®â१ª¥ 0; π6³ ´y π6 = 0., 㤮¢«¥â¢®àïî騥 ãá«®¢¨ï¬:y(0) = 0,15.2. ©â¨ ¢á¥ ᮡáâ¢¥ë¥ äãªæ¨¨ y(x) ¤«ï ®¯¥à â®à Ly == −y 00 y 0 (1) = 0.®â१ª¥ [0; 1], 㤮¢«¥â¢®àïî騥 ãá«®¢¨ï¬:y(0) = 0,15.3.
©â¨ ¢á¥ ᮡáâ¢¥ë¥ äãªæ¨¨ y(x) ¤«ï ®¯¥à â®à Ly == −y 00 ®â१ª¥ [0; π],y 0 (π) + y(π) = 0.㤮¢«¥â¢®àïî騥 ãá«®¢¨ï¬:y 0 (0) = 0,= −y 00 ®â१ª¥ 41 ; 12³ ´= y 0 21 = 0., 㤮¢«¥â¢®àïî騥 ãá«®¢¨ï¬:15.4. ©â¨ ¢á¥ ᮡá⢥ë¥äãªæ¨¨ y(x) ¤«ï ®¯¥à â®à ³ Ly´ =ih15.5. ©â¨ ¢á¥ ᮡá⢥ë¥hiäãªæ¨¨Ly = ®â१ª¥³ ´y 0 π2 = y(π) = 0.−y 00π ;π2y 14 =¤«ï ®¯¥à â®à , 㤮¢«¥â¢®àïî騥 ãá«®¢¨ï¬:y(x)15.6. ©â¨ ¢á¥ ᮡá⢥ë¥äãªæ¨¨ y(x) ¤«ï ®¯¥à â®à Ly =hi= −y 00 ®â१ª¥ 0; π4³ ´³ ´y π4 − y 0 π4 = 0., 㤮¢«¥â¢®àïî騥 ãá«®¢¨ï¬:y(0) = 0,16.
¤ ç âãଠ{¨ã¢¨««ï. ਬ¥¥¨¥ äãªæ¨¨à¨ .16.1. âì ®¯à¥¤¥«¥¨¥ ®¯¥à â®à âãଠ{¨ã¢¨««ï. ª -§ âì ãá«®¢¨ï £« ¤ª®áâì ¨ § ª®®¯à¥¤¥«ñ®áâì (¥á«¨ ¤®)¢á¥å ¢å®¤ïé¨å ¢ ¥£® äãªæ¨©.16.2. âì ®¯à¥¤¥«¥¨¥ äãªæ¨¨ ਠ§ ¤ ç¨ âãଠ{¨ã¢¨««ï ¨ 㪠§ âì ®¡é¨© ¢¨¤ ä®à¬ã«ë ¤«ï ¥ñ ¢ëç¨á«¥¨ï.16.4{16.7: ©â¨ äãªæ¨¨ ਠ®¯¥à â®à âãଠ{¨ã¢¨««ïL:½½16.3.14Ly = −y 00 , 0 < x < 1,y(0) = y(1) = 0;16.4.Ly = −y 00 , 0 < x < 2,y(0) = y 0 (2) = 0;16.5.16.6.½Ly = −y 00 + y, 0 < x < 1,0= 0, y(1) = 0;½ y(0) + y (0)Ly = −y 00 + 4y, 0 < x < 1,2y(0) − y 0 (0) = 0, y 0 (1) = 0.16.8{16.11: ) ¯®¬®éìî äãªæ¨¨ ਠᢥá⨠§ ¤ çãâãଠ{¨ã¢¨««ï ª ¨â¥£à «ì®¬ã ãà ¢¥¨î;¡) 㪠§ âì ®¡é¨© ¢¨¤ äãªæ¨¨ ਠ(â®ç® ¢ëç¨á«ïâì äãªæ¨î½ ਠ¥ ¤®):16.7.16.8.16.9.16.10.−y 00 = λy, 0 < x < 2,= y(2) = 0;½ y(0)−y 00 + xy = λy + x3 , 1 < x < 2,0, y 0 (2) = 0;½ y(1)2 =00−x y − 2xy 0 = λy, 1 < x < 2,+ y 0 (1) = 0, y(2) = 0;½ y(1)−ex y 00 − ex y 0 + x3 y = λy + sin x, 0 < x < 1,y(0) + 2y 0 (0) = 0, y 0 (1) = 0.17.
¥â®¤ ¯®â¥æ¨ «®¢.17.1. âì ®¯à¥¤¥«¥¨¥ ®¡êñ¬®£® ¯®â¥æ¨ « ¢ R3 ¨ ¯¥à¥ç¨á«¨âì ¥£® ®á®¢ë¥ ᢮©á⢠.17.2. ) âì ®¯à¥¤¥«¥¨¥ ¯®¢¥àå®á⮣® ¯®â¥æ¨ « ¯à®á⮣® á«®ï¢ R3 ;¡) 㪠§ âì ¥®¡å®¤¨¬ë¥ ãá«®¢¨ï £« ¤ª®áâì § ¤ îé¨å ¥£®äãªæ¨© ¨ £« ¤ª®áâì ¯®¢¥àå®áâ¨;¢) ¯¥à¥ç¨á«¨âì ¥£® ®á®¢ë¥ ᢮©á⢠.17.3. âì ®¯à¥¤¥«¥¨¥ ®¡êñ¬®£® ¯®â¥æ¨ « ¢ R3 ¨ ¯¥à¥ç¨á«¨âì ¥£® ®á®¢ë¥ ᢮©á⢠.18.
¤ ç¨ áä¥à¨ç¥áª¨¥ äãªæ¨¨.18.1. 믨á âì ä®à¬ã«ã ¤«ï ®¯¥à â®à ¯« á ∆u ¢ áä¥à¨-ç¥áª¨å ª®®à¤¨ â å (r, ϕ, θ) ((x,py, z) ∈ R3 , x = r cos ϕ sin θ, y == r sin ϕ sin θ, z = r cos θ, r = x2 + y 2 + z 2 , ϕ ∈ [0; 2π], θ ∈∈ [0, π]).18.2. ¥è¥¨¥ ãà ¢¥¨ï ¯« á ∆u = 0 ¢ áä¥à¨ç¥áª¨å ª®®à¤¨ â å 室ïâ ¬¥â®¤®¬ à §¤¥«¥¨ï ¯¥à¥¬¥ëå: u(r, ϕ, θ) == Z(r)Y (ϕ, θ).15 ) 믨á âì ¤¨ää¥à¥æ¨ «ìë¥ ãà ¢¥¨ï ¤«ï äãªæ¨© Z(r)¨ Y (ϕ, θ);¡) ãáâì Y (ϕ, θ) = Φ(ϕ)X(θ). 믨á âì ãà ¢¥¨¥ ¤«ï äãªæ¨¨ Φ(ϕ), à¥è¥¨¥ í⮣® ãà ¢¥¨ï, ãà ¢¥¨ï ¤«ï äãªæ¨¨ X(θ).18.3.
âì ®¯à¥¤¥«¥¨¥ ¯®«¨®¬ ¥¦ ¤à Pn (ξ), n = 0, 1,2, . . . , ¢ë¯¨á âì ¤¨ää¥à¥æ¨ «ì®¥ ãà ¢¥¨¥, ª®â®à®¬ã ®ã¤®¢«¥â¢®àï¥â, ¢ëç¨á«¨âì â ª¦¥Z1−1Pn (ξ)Pm (ξ) dξ,n 6= m.18.4. âì ®¯à¥¤¥«¥¨¥ ¯®«¨®¬ ¥¦ ¤à Pn (ξ), n = 0, 1, 2,. . . ¨ ¯à¨á®¥¤¨ñëå ¯®«¨®¬®¢ ¥¦ ¤à Pn(m) (ξ), m = 0, 1,. . . , n.18.5. ¥è¥¨¥ ãà ¢¥¨ï ¯« á ∆u = 0 ¢ áä¥à¨ç¥áª¨å ª®®à¤¨ â å 室ïâ ¬¥â®¤®¬ à §¤¥«¥¨ï ¯¥à¥¬¥ëå: u(r, ϕ, θ) =∞P=Zn (r)Yn (ϕ, θ). 믨á âì ä®à¬ã«ë ¤«ï Zn (r) ¨ Yn (ϕ, θ).n=018.6. 믨á âì ä®à¬ã«ã ¤«ï à¥è¥¨ï § ¤ ç¨ ¨à¨å«¥u(r, ϕ, θ):½∆u = 0, r < R,u|r=R = f (ϕ, θ);½∆u = 0, r > R,¡) ¢¥ è à |u| |r>∞ < ∞, u|r=R = f (ϕ, θ);½∆u = 0, R1 < r < R2 ,¢) ¢ áä¥à¨ç¥áª®¬ á«®¥ u|r=R1 = f (ϕ, θ), u|r=R2 = f (ϕ, θ).18.7{18.14: ¥è¨âì á«¥¤ãî騥 § ¤ ç¨: ((x,py, z) ∈ R3 , x == r cos ϕ sin θ, y = r sin ϕ sin θ, z = r cos θ, r = x2 + y 2 + z 2 ):½½∆u = 0, r > R,∆u = 0, r < R,18.7.