Учебник - О некоторых понятиях теории вероятностей - Широков (1188222), страница 3
Текст из файла (страница 3)
Äëÿ êàæäîãî íàòóðàëüíîãî n ïî èíäóêöèè îïðåäåëèì ñåìåéñòâî ìíîæåñòâòàê: Bn åñòü ñîâîêóïíîñòü âñåâîçìîæíûõ ñ÷åòíûõ ïåðåñå÷åíèé è îáúåäèíåíèéìíîæåñòâ èç Bn−1 , B0 = A. ÑåìåéS+∞ñòâî B∞ = n=1 Bn , ò.å. îáúåäèíåíèå âîçðàñòàþùåé ïîñëåäîâàòåëüíîñòè ñåìåéñòâ {Bn }, íå ÿâëÿåòñÿ σ -àëãåáðîé [3, 30, XIV]. Ïîñêîëüêó ëþáîå ìíîæåñòâî èç B∞ ïðèíàäëåæèòσ -àëãåáðå σ(A), îíà áîãà÷å, ÷åì ñåìåéñòâî B∞ , ïîñòðîåííîåêîíñòðóêòèâíûì îáðàçîì èç àëãåáðû A.Òàêèì îáðàçîì, íåêîíñòðóêòèâíîå ðàññóæäåíèå, îñíîâàííîå íà èñïîëüçîâàíèè òåîðåìû 2, ÿâëÿåòñÿ åäèíñòâåííûìñïîñîáîì äîêàçàòåëüñòâà ñóùåñòâîâàíèÿ σ -àëãåáðàè÷åñêîéîáîëî÷êè ó ëþáîãî ñåìåéñòâà ïîäìíîæåñòâ ïðîèçâîëüíîãîìíîæåñòâà Ω.1.3.
σ -àëãåáðû áîðåëåâñêèõ ìíîæåñòâÏîíÿòèå σ -àëãåáðàè÷åñêîé îáîëî÷êè ïðèâîäèò íàñ ê ñëåäóþùåìó âàæíîìó ïîíÿòèþ.Îïðåäåëåíèå 6. Ïóñòü I ñåìåéñòâî âñåõ èíòåðâàëîâ âèäà (a, b) íà ïðÿìîé R. σ -àëãåáðà σ(I) íàçûâàåòñÿ áîðåëåâñêîé σ -àëãåáðîé íà ïðÿìîé R è îáîçíà÷àåòñÿ B(R), àåå ýëåìåíòû áîðåëåâñêèìè ìíîæåñòâàìè.Äëÿ ëþáîãî áîðåëåâñêîãî ìíîæåñòâà A (íàïðèìåð,îòðåçêà [0, 1]) áîðåëåâñêîé σ -àëãåáðîé B(A) íàçûâàåòñÿσ -àëãåáðà, ñîñòàâëåííàÿ èç ìíîæåñòâ âèäà A ∩ B, B ∈B(R).Ïîìèìî èíòåðâàëîâ σ -àëãåáðà B(R) ñîäåðæèò âñå ¾ïðîñòûå¿ ïîäìíîæåñòâà ïðÿìîé: òî÷êè, îòðåçêè, êîíå÷íûå èáåñêîíå÷íûå ïîëóèíòåðâàëû, èõ äîïîëíåíèÿ, à òàêæå îáúåäèíåíèÿ è ïåðåñå÷åíèÿ ëþáûõ ñ÷åòíûõ íàáîðîâ òàêèõ ìíîæåñòâ. Ïîêàæåì, íàïðèìåð, ÷òî σ -àëãåáðà B(R) ñîäåðæèòïðîèçâîëüíûé îòðåçîê [a, b], a 6 b.
Ïîñêîëüêó ïðè ëþáîì16n ìíîæåñòâî (a − 1/n, b + 1/n) ïðèíàäëåæèòñåìåéñòâó ITèç îïðåäåëåíèÿ 6, ìíîæåñòâî [a, b] = n∈N (a − 1/n, b + 1/n)ïðèíàäëåæèò σ -àëãåáðå σ(I) = B(R).Ñòàíäàðòíûé ñïîñîá äîêàçàòåëüñòâà ¾áîðåëåâîñòè¿êàêîãî-ëèáî ïîäìíîæåñòâà ïðÿìîé R ïðåäñòàâëåíèå åãî ââèäå êîìïîçèöèè îïåðàöèé äîïîëíåíèÿ, ïåðåñå÷åíèÿ è îáúåäèíåíèÿ, ïðèìåíåííûõ ê ñ÷åòíûì íàáîðàì ïðîñòûõ ïîäìíîæåñòâ óêàçàííîãî âûøå âèäà.
 òî æå âðåìÿ èç ïðèìåðà8 ñëåäóåò, ÷òî σ -àëãåáðà B(R) íå èñ÷åðïûâàåòñÿ ìíîæåñòâàìè, äîïóñêàþùèìè òàêîå ïðåäñòàâëåíèå!Çàäà÷à 9. Ïîêàçàòü ïðèíàäëåæíîñòü σ -àëãåáðå B(R)ìíîæåñòâà âñåõ èððàöèîíàëüíûõ ÷èñåë.Áîðåëåâñêèì ÿâëÿåòñÿ äàæå òàêîå ýêçîòè÷åñêîå ìíîæåñòâî, êàê ìíîæåñòâî Êàíòîðà (ñì. [2, ñ. 74]). Âîîáùå, ìîæíîñìåëî ñêàçàòü, ÷òî σ -àëãåáðà B(R) ñîäåðæèò âñå ïîäìíîæåñòâà ïðÿìîé R, âîçíèêàþùèå â ïðàêòè÷åñêîé äåÿòåëüíîñòè÷åëîâåêà (ïðè âñåé íåîäíîçíà÷íîñòè ýòîãî ïîíÿòèÿ!). Òåì íåìåíåå ñóùåñòâóþò ìíîæåñòâà, íå ÿâëÿþùèåñÿ áîðåëåâñêèìè(ñì. ïðèâåäåííûé íèæå ïðèìåð 9), è èõ íåîáõîäèìî ó÷èòûâàòü ïðè òåîðåòè÷åñêèõ èññëåäîâàíèÿõ.Çàìåòèì, ÷òî âûáîð â îïðåäåëåíèè 6 èìåííî ñåìåéñòâàèíòåðâàëîâ I êà÷åñòâå ïîðîæäàþùåãî σ -àëãåáðó B(R) íå ÿâëÿåòñÿ ñóùåñòâåííûì.Çàäà÷à 10.
Ïîêàçàòü, ÷òî â êà÷åñòâå ñåìåéñòâà I â îïðåäåëåíèè 6 ìîæíî âçÿòü ëþáîå èç ñëåäóþùèõ ñåìåéñòâ ïîäìíîæåñòâ ïðÿìîé R:• ñåìåéñòâî âñåõ îòðåçêîâ [a, b];• ñåìåéñòâî âñåõ ïîëóèíòåðâàëîâ (a, b] (èëè [a, b));• ñåìåéñòâî âñåõ ëó÷åé [a, +∞) (èëè (−∞, b]);• ñåìåéñòâî âñåõ ëó÷åé (a, +∞) (èëè (−∞, b));17• ñåìåéñòâî âñåõ îòðåçêîâ [a, b] ñ ðàöèîíàëüíûìè êîíöàìè,ò.å., ïîêàçàòü, ÷òî σ -àëãåáðàè÷åñêèå îáîëî÷êè âñåõ óêàçàííûõ ñåìåéñòâ ñîâïàäàþò ñ σ -àëãåáðàè÷åñêîé îáîëî÷êîé ñåìåéñòâà èíòåðâàëîâ I.Ïîäñêàçêà: äëÿ òîãî ÷òîáû äîêàçàòü, ÷òî ó äâóõ ðàçëè÷íûõíàáîðîâ âåêòîðîâ â ëèíåéíîì ïðîñòðàíñòâå îäíà è òà æåëèíåéíàÿ îáîëî÷êà, äîñòàòî÷íî ïîêàçàòü, ÷òî âñå âåêòîðûïåðâîãî íàáîðà ìîæíî ïðåäñòàâèòü â âèäå ëèíåéíûõ êîìáèíàöèé âåêòîðîâ âòîðîãî íàáîðà è íàîáîðîò.
Ðåøåíèå: [1, ñ.23] ñîîòâåòñòâèè ñ îïðåäåëåíèåì 6 áîðåëåâñêàÿ σ -àëãåáðàB([0, 1]) îïðåäåëÿåòñÿ êàê ñåìåéñòâî, ñîñòîÿùåå èç ïåðåñå÷åíèé ìíîæåñòâ èç B(R) ñ îòðåçêîì [0, 1]. Çàìåòèì, ÷òîσ -àëãåáðó B([0, 1]) ìîæíî îïðåäåëèòü è íåçàâèñèìûì îáðàçîì.Çàäà÷à 11. Ïóñòü A àëãåáðà ïðîìåæóòêîâ îòðåçêà[0, 1], ðàññìîòðåííàÿ â ïðèìåðå 5. Ïîêàçàòü, ÷òî σ(A) =B([0, 1]).Çàìå÷àòåëüíîé îñîáåííîñòüþ áîðåëåâñêèõ ìíîæåñòâ ÿâëÿåòñÿ èõ èçìåðèìîñòü, ò.å.
âîçìîæíîñòü îäíîçíà÷íîãî ñîïîñòàâëåíèÿ êàæäîìó òàêîìó ìíîæåñòâó íåîòðèöàòåëüíîãî÷èñëà èëè +∞ òàêèì îáðàçîì, ÷òî ïîëó÷åííîå ñîîòâåòñòâèåÿâëÿåòñÿ àäåêâàòíûì îáîáùåíèåì íà σ -àëãåáðó áîðåëåâñêèõìíîæåñòâ ïîíÿòèÿ äëèíû îòðåçêà, èíòåðâàëà è ò.ï. Íèæåìû ïîêàæåì (ñì. ïðèìåð 9), ÷òî ïîäîáíîãî îáîáùåíèÿ íàσ -àëãåáðó âñåõ ïîäìíîæåñòâ ÷èñëîâîé ïðÿìîé íå ñóùåñòâóåò.Ñôîðìóëèðóåìñîîòâåòñòâóþùèéðåçóëüòàòäëÿσ -àëãåáðû B([0, 1]), äîêàçàòåëüñòâî êîòîðîãî ìîæíîíàéòè â [1, 4].Òåîðåìà 3. Ñóùåñòâóåò åäèíñòâåííàÿ ôóíêöèÿ PL ,18îïðåäåëåííàÿ íà ýëåìåíòàõ σ -àëãåáðû B([0, 1]) áîðåëåâñêèõìíîæåñòâ è ïðèíèìàþùàÿ çíà÷åíèÿ â [0, 1], êîòîðàÿ îáëàäàåò ñëåäóþùèìè ñâîéñòâàìè:1) PL (∅) = 0, PL ([0, 1]) = 1;PP2) PL ( i Bi ) =i PL (Bi ) äëÿ ëþáîãî êîíå÷íîãî èëèñ÷åòíîãî íàáîðà {Bi } íåïåðåñåêàþùèõñÿ ìíîæåñòâ èçB([0, 1]);3) PL ([a, b]) = b − a ïðè ëþáûõ a, b ∈ [0, 1], òàêèõ ÷òî a 6 b.Ýòà ôóíêöèÿ íà σ -àëãåáðå B([0, 1]) íàçûâàåòñÿ ìåðîé Ëåáåãà.Ïðåäëàãàåì ÷èòàòåëþ äîêàçàòü, ÷òî èç óêàçàííûõñâîéñòâ ôóíêöèè PL ñëåäóåò, ÷òî• PL ([a, b)) = PL ((a, b]) = PL ((a, b)) = b − a ïðè ëþáûõ aè b èç [0, 1], òàêèõ ÷òî a 6 b;• PL (I[0,1] ) = 1, ãäå I[0,1] ìíîæåñòâî èððàöèîíàëüíûõ÷èñåë èç [0, 1].Òàêèì îáðàçîì, ìåðà Ëåáåãà PL ýòî îáîáùåíèå ïîíÿòèÿ äëèíû îòðåçêà èëè (ïîëó)èíòåðâàëà íà êëàññ áîðåëåâñêèõ ìíîæåñòâ.Ñëåäóþùèé ïðèìåð ïîêàçûâàåò, ÷òî σ -àëãåáðó B([0, 1])â òåîðåìå 3 íåëüçÿ çàìåíèòü íà σ -àëãåáðó Amax ([0, 1]) âñåõïîäìíîæåñòâ îòðåçêà [0, 1].Ïðèìåð 9.
Ïîñòðîèì ñ÷åòíûé íàáîð {Ak }k∈Z ïîäìíîæåñòâ îòðåçêà [0, 1], îáëàäàþùèé ñëåäóþùèìè ñâîéñòâàìè:S• k∈Z Ak = (0, 1] è Ak ∩ Aj = ∅ äëÿ âñåõ k 6= j ;• ìíîæåñòâî Ak ïîëó÷åíî ñäâèãîì ïî ìîäóëþ 1 èç ìíîæåñòâà A0 , ò.å. ïîâîðîòîì ýòîãî ìíîæåñòâà íà íåêîòîðûé óãîë ïðè îòîæäåñòâëåíèè èíòåðâàëà (0, 1] ñ çàìêíóòûì êðóãîì.19Åñëè áû ôóíêöèÿ PL èìåëà áû ïðîäîëæåíèå íàσ -àëãåáðó Amax ([0, 1]), îáëàäàþùåå ñâîéñòâàìè 13 èç òåîðåìû 3, òî ìû ïîëó÷èëè áû, ÷òîXPL (Ak ) = PL ((0, 1]) = 1k∈Z(â ñèëó ïåðâîãî ñâîéñòâà íàáîðà {Ak }k∈Z ), ÷òî ïðîòèâîðå÷èò òîìó, ÷òî PL (Ak ) = PL (A0 ) ïðè âñåõ k (â ñèëó âòîðîãîñâîéñòâà ýòîãî íàáîðà).Ýòî íàáëþäåíèå è òåîðåìà 3 ïîêàçûâàþò, ÷òî âñå ìíîæåñòâà èç íàáîðà {Ak }k∈Z íå ÿâëÿþòñÿ áîðåëåâñêèìè.Áóäåì ñòðîèòü íàáîð {Ak }k∈Z , îòîæäåñòâëÿÿ èíòåðâàë(0, 1] ñ çàìêíóòûì êðóãîì C .
Çàôèêñèðóåì èððàöèîíàëüíîå÷èñëî q . Çàìåòèì, ÷òî êàæäîé òî÷êå x0 ∈ C ìîæíî ñîïîñòàâèòü ñ÷åòíûé íàáîð òî÷åê {xk }k∈Z ⊂ C , ïîëó÷åííûõ èçòî÷êè x0 ïîâîðîòîì íà óãîë qkπ , ïðè÷åì âñå òî÷êè â ýòîì íàáîðå ðàçíûå â ñèëó èððàöèîíàëüíîñòè ÷èñëà q . ßñíî, ÷òî äâàòàêîãî ðîäà íàáîðà ëèáî íå ïåðåñåêàþòñÿ, ëèáî ñîâïàäàþò.Ïîýòîìó êðóã C ìîæíî ïðåäñòàâèòü â âèäå îáúåäèíåíèÿ ñåìåéñòâà {Tλ }λ∈Λ , ñîñòîÿùåãî èç íåïåðåñåêàþùèõñÿ íàáîðîâòî÷åê óêàçàííîãî âûøå âèäà (ìíîæåñòâî èíäåêñîâ Λ ìîæíîñ÷èòàòü íåêîòîðûì ïîäìíîæåñòâîì êðóãà C ).
Ýòî ñåìåéñòâîíåñ÷åòíî, ïîñêîëüêó ìíîæåñòâî C íåñ÷åòíî, à ïðè êàæäîìλ ∈ Λ íàáîð Tλ ñîñòîèò èç ñ÷åòíîãî ÷èñëà òî÷åê. Äëÿ êàæäîãî λ ∈ Λ èç íàáîðà Tλ âûáåðåì ïî îäíîé òî÷êå yλ . ÏîëîæèìA0 = {yλ }λ∈Λ . Ïóñòü Ak ìíîæåñòâî, ïîëó÷åííîå èç A0ïîâîðîòîì íà óãîë qkπ . Ïðåäîñòàâëÿåì ÷èòàòåëþ ïðîâåðèòüâûïîëíåíèå äëÿ íàáîðà {Ak }k∈Z óêàçàííûõ âûøå ñâîéñòâ.Ïîíÿòèå áîðåëåâñêîé σ -àëãåáðû íà ïðÿìîé îáîáùàåòñÿ íà ñëó÷àé ïðîèçâîëüíîãî ìåòðè÷åñêîãî ïðîñòðàíñòâà3 , â÷àñòíîñòè ïðîñòðàíñòâà Rn .3Ìåòðè÷åñêèì ïðîñòðàíñòâîì íàçûâàåòñÿ ìíîæåñòâî X, äëÿ ëþáûõäâóõ ýëåìåíòîâ x è y êîòîðîãî îïðåäåëåíî ðàññòîÿíèå ρ(x, y), îáëàäàþùåå ðÿäîì åñòåñòâåííûõ ñâîéñòâ [2].20Îïðåäåëåíèå 7. Ïóñòü X ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ìåòðèêîé ρ, U ñåìåéñòâî, ñîñòîÿùåå èç ïîäìíîæåñòâ âèäàUr (x) = {y ∈ X | ρ(x, y) < r},x ∈ X,r > 0,ò.å. ¾îòêðûòûõ øàðîâ¿ ðàäèóñà r ñ öåíòðîì x.
σ -àëãåáðàσ(U) íàçûâàåòñÿ áîðåëåâñêîé σ -àëãåáðîé íà ïðîñòðàíñòâå Xè îáîçíà÷àåòñÿ B(X), à åå ýëåìåíòû áîðåëåâñêèìè ìíîæåñòâàìè.Çàäà÷à 12. Ïóñòü X = R2 . Ïîêàçàòü, ÷òî σ -àëãåáðàB(R2 ) ñîäåðæèò ëþáîé êâàäðàò, à òàêæå ãðàíèöó ýòîãîêâàäðàòà.Ïðèìåð 10. Ïóñòü R∞ ïðîñòðàíñòâî óïîðÿäî÷åííûõ÷èñëîâûõ ïîñëåäîâàòåëüíîñòåé x = (x1 , x2 , x3 , . . . ) ñ ìåòðèP2−k |xk −yk |∞êîé ρ(x, y) = +∞k=1 1+|xk −yk | . Áîðåëåâñêàÿ σ -àëãåáðà B(R )èãðàåò âàæíóþ ðîëü â òåîðèè âåðîÿòíîñòåé.
Ïîäðîáíîñòè îñâîéñòâàõ ýòîé σ -àëãåáðû ñì. â [4, ñ. 160].Äðóãèå ïðèìåðû áîðåëåâñêèõ σ -àëãåáð, èñïîëüçóåìûõ âòåîðèè âåðîÿòíîñòåé è åå ïðèëîæåíèÿõ, ìîæíî íàéòè â [1, 4].2. Âåðîÿòíîñòíîå ïðîñòðàíñòâî àêñèîìàòèêå À.Í.Êîëìîãîðîâà âåðîÿòíîñòíûì ïðîñòðàíñòâîì íàçûâàåòñÿ òðîéêà {Ω, A, P}, ñîñòîÿùàÿ èçïðîèçâîëüíîãî ìíîæåñòâà Ω, íàçûâàåìîãî ìíîæåñòâîì ýëåìåíòàðíûõ èñõîäîâ, σ -àëãåáðû A ïîäìíîæåñòâ ýòîãî ìíîæåñòâà, íàçûâàåìûõ ñîáûòèÿìè, è âåðîÿòíîñòíîé ìåðû Píà σ -àëãåáðå A, ò.å.