Главная » Просмотр файлов » Учебник - О некоторых понятиях теории вероятностей - Широков

Учебник - О некоторых понятиях теории вероятностей - Широков (1188222), страница 2

Файл №1188222 Учебник - О некоторых понятиях теории вероятностей - Широков (Учебник - О некоторых понятиях теории вероятностей - Широков) 2 страницаУчебник - О некоторых понятиях теории вероятностей - Широков (1188222) страница 22020-09-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

¾êâàäðàòèêîâ¿ ñ ïðîèçâîëüíûìè ñòîðîíàìè A ⊆ [0, 1] èB ⊆ [0, 1]. Îøèáêà ñâÿçàíà ñ ïåðåíîñîì îïåðàöèè ïåðåñå÷åíèÿ ñ ñàìèõ àëãåáð íà èõ ýëåìåíòû. Ïåðåñå÷åíèå àëãåáð ýòî íå åñòü ñåìåéñòâî, ñîñòàâëåííîå èç ïåðåñå÷åíèé ýëåìåíòîâ ýòèõ àëãåáð! Ñëàáûì îïðàâäàíèåì ýòîé îøèáêè ÿâëÿåòñÿ íàëè÷èå ìíîæåñòâ ðàçíîé ïðèðîäû â ðàññìàòðèâàåìûõ êîíñòðóêöèÿõ (êàæäàÿ àëãåáðà ýòî ìíîæåñòâî, ñàìîñîñòàâëåííîå èç ìíîæåñòâ), à çíà÷èò, è äâóõ ðàçíûõ îïåðàöèé ïåðåñå÷åíèÿ.Íà ñàìîì äåëå ñåìåéñòâî Cv ∩ Ch ñîñòîèò âñåãî èç äâóõìíîæåñòâ ∅ è Ω = [0, 1] × [0, 1], ïîñêîëüêó òîëüêî ýòè ìíîæåñòâà ÿâëÿþòñÿ âåðòèêàëüíûìè è ãîðèçîíòàëüíûìè öèëèíäðàìè îäíîâðåìåííî. ïðèâåäåííîì âûøå ïðèìåðå ïåðåñå÷åíèå äâóõ àëãåáðCv è Ch ñàìî ÿâëÿåòñÿ àëãåáðîé.

Ýòî íå ñëó÷àéíî!Òåîðåìà 1. Ïåðåñå÷åíèå ëþáîãî íàáîðà àëãåáð ïîäìíî-æåñòâ ïðîèçâîëüíîãî ìíîæåñòâà Ω ÿâëÿåòñÿ àëãåáðîé.Äîêàçàòåëüñòâî. Ïóñòü {Aλ }λ∈Λ ïðîèçâîëüíûé íà-áîð àëãåáðT ïîäìíîæåñòâ ìíîæåñòâà Ω. Ïî îïðåäåëåíèþ ñåìåéñòâî λ∈Λ Aλ ñîäåðæèò ∅ è Ω.TÏóñòü A è B ëþáûå äâà ìíîæåñòâà èç λ∈Λ Aλ . Ïîîïðåäåëåíèþ ïðè êàæäîì λ ∈ Λ èìååì A ∈ Aλ è B ∈ Aλ ,à çíà÷èò, è A ∩ B ∈ Aλ , ïîñêîëüêó ATλ àëãåáðà. Ñëåäîâàòåëüíî, A ∩ B ýëåìåíò ñåìåéñòâà λ∈Λ AλT.ÒàêT æå ëåãêî äîêàçûâàåòñÿ, ÷òî èç A ∈ λ∈Λ Aλ ñëåäóåòA ∈ λ∈Λ Aλ .

¤Ïðèâåäåííîå âûøå ïðîñòîå óòâåðæäåíèå ñôîðìóëèðîâàíî â âèäå òåîðåìû, ïîñêîëüêó îíî èìååò âàæíîå ñëåäñòâèå.Ñëåäñòâèå 1. Äëÿ ëþáîãî ñåìåéñòâà F ïîäìíîæåñòâ9ïðîèçâîëüíîãî ìíîæåñòâà Ω ñóùåñòâóåò åäèíñòâåííàÿàëãåáðà α(F), îáëàäàþùàÿ ñëåäóþùèìè ñâîéñòâàìè:1) F ÿâëÿåòñÿ ïîäñåìåéñòâîì àëãåáðû α(F), ò.å. èç A ∈ Fñëåäóåò A ∈ α(F);2) α(F) ÿâëÿåòñÿ ïîäàëãåáðîé ëþáîé àëãåáðû, ñîäåðæàùåéF â êà÷åñòâå ïîäñåìåéñòâà.Äîêàçàòåëüñòâî. Ðàññìîòðèì íàáîð, ñîñòîÿùèé èç âñåõàëãåáð ïîäìíîæåñòâ ìíîæåñòâà Ω, ñîäåðæàùèõ F â êà÷åñòâåïîäñåìåéñòâà. Ýòîò íàáîð íåïóñò, ïîñêîëüêó îí ñîäåðæèò àëãåáðó Amax (Ω) âñåõ ïîäìíîæåñòâ ìíîæåñòâà Ω.  ñèëó òåîðåìû 1 ïåðåñå÷åíèå âñåõ àëãåáð äàííîãî íàáîðà ÿâëÿåòñÿàëãåáðîé, êîòîðàÿ ñîäåðæèò F â êà÷åñòâå ïîäñåìåéñòâà èïî îïðåäåëåíèþ îïåðàöèè ïåðåñå÷åíèÿ ÿâëÿåòñÿ ïîäàëãåáðîé êàæäîé àëãåáðû èç óêàçàííîãî íàáîðà.

¤Àëãåáðà α(F) ÿâëÿåòñÿ ìèíèìàëüíîé àëãåáðîé, ñîäåðæàùåé ñåìåéñòâî F, â òîì ñìûñëå, ÷òî åñëè èç íåå óäàëèòü îäèíèëè íåñêîëüêî ëþáûõ åå ýëåìåíòîâ, òî îíà ëèáî ïåðåñòàíåòáûòü àëãåáðîé, ëèáî íå áóäåò ñîäåðæàòü F â êà÷åñòâå ïîäñåìåéñòâà.Ïðîñòåéøèé ïðèìåð àëãåáðû α(F) ýòî ðàññìîòðåííàÿâ ïðèìåðå 3 àëãåáðà α({A}) = {∅, A, A, Ω}, ïîðîæäåííàÿìíîæåñòâîì A ⊂ Ω. Äðóãîé ïðèìåð àëãåáðà α({A, B}),ïîðîæäåííàÿ ñåìåéñòâîì èç äâóõ ðàçëè÷íûõ ïîäìíîæåñòâ Aè B ìíîæåñòâà Ω, êîòîðóþ ÷èòàòåëü äîëæåí áûë ïîñòðîèòüâ çàäà÷å 2.Çàäà÷à 3. Ïóñòü Ω = N è F ñåìåéñòâî îäíîýëåìåíòíûõìíîæåñòâ âèäà {n}, n ∈ N. Ïîêàçàòü, ÷òî α(F) ýòî àëãåáðàèç ïðèìåðà 4.Çàäà÷à 4. Ïóñòü Ω = [0, 1] è F ñåìåéñòâî âñåõ îòðåçêîâ[a, b] ⊆ [0, 1].

Ïîêàçàòü, ÷òî α(F) ýòî àëãåáðà èç ïðèìåðà5.10Ðàçâèâàÿ îòìå÷åííóþ ðàíåå àíàëîãèþ ìåæäó ïîíÿòèÿìè àëãåáðû-ïîäàëãåáðû è ëèíåéíîãî ïðîñòðàíñòâà-ïîäïðîñòðàíñòâà, çàìåòèì, ÷òî àëãåáðà α(F), ïîðîæäåííàÿ ñåìåéñòâîì F ïîäìíîæåñòâ ìíîæåñòâà Ω, ÿâëÿåòñÿàíàëîãîì ëèíåéíîé îáîëî÷êè lin(L0 ) ìíîæåñòâà L0 âåêòîðîâëèíåéíîãî ïðîñòðàíñòâà L ìèíèìàëüíîãî ïîäïðîñòðàíñòâà ïðîñòðàíñòâà L, ñîäåðæàùåãî âñå âåêòîðû èç L0 .

Âñèëó ýòîé àíàëîãèè àëãåáðó α(F) áóäåì êðàòêî íàçûâàòüàëãåáðàè÷åñêîé îáîëî÷êîé ñåìåéñòâà F2 .Çàäà÷à 5.∗ Äàòü êîíñòðóêòèâíîå îïèñàíèå àëãåáðû α(F)äëÿ ëþáîãî ñåìåéñòâà ïîäìíîæåñòâ F ïðîèçâîëüíîãî ìíîæåñòâà Ω.1.2. σ -àëãåáðûÅñëè A àëãåáðà ïîäìíîæåñòâ ìíîæåñòâà Ω, òî, ðàññóæäàÿïî èíäóêöèè, íåòðóäíî ïîêàçàòü, ÷òî ïåðåñå÷åíèå è îáúåäèíåíèå ëþáîãî êîíå÷íîãî ÷èñëà ìíîæåñòâ èç A ÿâëÿåòñÿ ìíîæåñòâîì èç A. Îäíàêî èç ýòîãî ðàññóæäåíèÿ íå ñëåäóåò, ÷òîïåðåñå÷åíèå è îáúåäèíåíèå ëþáîãî íàáîðà ìíîæåñòâ èç A ÿâëÿåòñÿ ìíîæåñòâîì èç A. Äðóãèìè ñëîâàìè, àëãåáðà A ìîæåò áûòü íå çàìêíóòà îòíîñèòåëüíî îïåðàöèé ïåðåñå÷åíèÿè îáúåäèíåíèÿ, ïðèìåíåííûõ ñðàçó ñ áåñêîíå÷íîìó ÷èñëó ååýëåìåíòîâ (ñì. ïðèìåðû íèæå).Ñ òî÷êè çðåíèÿ èñïîëüçîâàíèÿ ðàññìàòðèâàåìûõ òåîðåòèêî-ìíîæåñòâåííûõ êîíñòðóêöèé â òåîðèè âåðîÿòíîñòåéâàæíûì ÿâëÿåòñÿ òðåáîâàíèå çàìêíóòîñòè àëãåáðû îòíîñèòåëüíî îïåðàöèé ïåðåñå÷åíèÿ è îáúåäèíåíèÿ, ïðèìåíåííûõê ëþáîìó ñ÷åòíîìó íàáîðó åå ýëåìåíòîâ.

Ýòî òðåáîâàíèåïðèâîäèò íàñ ê ñëåäóþùåìó ïîíÿòèþ.Îïðåäåëåíèå 4. Àëãåáðà A ïîäìíîæåñòâ ìíîæåñòâàΩ íàçûâàåòñÿ σ -àëãåáðîé, åñëè äëÿ ëþáîãî ñ÷åòíîãî íàáî2Ýòà òåðìèíîëîãèÿ íå ÿâëÿåòñÿ îáùåïðèíÿòîé.11ðà {Ai } åå ýëåìåíòîâ ìíîæåñòâàýëåìåíòàìè ýòîé àëãåáðû.Ti AièSi Aiÿâëÿþòñÿ êà÷åñòâå ïðîñòåéøèõ ïðèìåðîâ àëãåáð, êîòîðûå ÿâëÿþòñÿ σ -àëãåáðàìè, ìîæíî ðàññìîòðåòü àëãåáðû èç ïðèìåðîâ 13 (â àëãåáðàõ èç ïðèìåðîâ 1 è 3 ïðîñòî íå ñóùåñòâóåòíåòðèâèàëüíûõ ñ÷åòíûõ íàáîðîâ, â àëãåáðå èç ïðèìåðà 2òðåáîâàíèå îïðåäåëåíèÿ 4 âûïîëíåíî ïî îïðåäåëåíèþ ýòîéàëãåáðû).Çàäà÷à 6.

Ïîêàçàòü, ÷òî äëÿ ïðîâåðêè íàëè÷èÿ ó àë-ãåáðû A ñâîéñòâà σ -àëãåáðû äîñòàòî÷íî ïîêàçàòü, ÷òî ëèáîòîëüêî ïåðåñå÷åíèå, ëèáî òîëüêî îáúåäèíåíèå ëþáîãî ñ÷åòíîãî íàáîðà ìíîæåñòâ èç ýòîé àëãåáðû ÿâëÿåòñÿ åå ýëåìåíòîì, ïðè÷åì âî âòîðîì ñëó÷àå ìîæíî îãðàíè÷èòüñÿ òîëüêîíàáîðàìè èç íåïåðåñåêàþùèõñÿ ìíîæåñòâ (ò.å. ñóììàìè âìåñòî îáúåäèíåíèé).Òàêèì îáðàçîì, σ -àëãåáðó îò àëãåáðû îòëè÷àåò íàëè÷èåó íåå äîïîëíèòåëüíîãî ñâîéñòâà (òàê æå, êàê êâàäðàò îò ïðÿìîóãîëüíèêà!).

Åñòåñòâåííûé âîïðîñ, âîçíèêàþùèé ó âäóì÷èâîãî ÷èòàòåëÿ: à ìîæåò ýòî ñâîéñòâî âûïîëíåíî àâòîìàòè÷åñêè? Èíà÷å ãîâîðÿ, ñóùåñòâóþò ëè àëãåáðû, êîòîðûåíå ÿâëÿþòñÿ σ -àëãåáðàìè (òàê æå, êàê ñóùåñòâóþò ïðÿìîóãîëüíèêè, îòëè÷íûå îò êâàäðàòîâ)?ßñíî, ÷òî ïðèìåð àëãåáðû, íå ÿâëÿþùåéñÿ σ -àëãåáðîé,íåëüçÿ ïîñòðîèòü, ðàññìàòðèâàÿ àëãåáðû ïîäìíîæåñòâ êîíå÷íîãî ìíîæåñòâà Ω. À âîò ñ÷åòíîãî ìíîæåñòâà Ω óæå äîñòàòî÷íî äëÿ êîíñòðóêöèè òàêîãî ïðèìåðà.Ïðèìåð 7. Àëãåáðà ïîäìíîæåñòâ íàòóðàëüíîãî ðÿäà N,ðàññìîòðåííàÿ â ïðèìåðå 4, íå ÿâëÿåòñÿ σ -àëãåáðîé. Äåéñòâèòåëüíî, âîçüìåì ñ÷åòíûé íàáîð îäíîýëåìåíòíûõ ìíîæåñòâ âèäà {2n}, n ∈ N, ïðèíàäëåæàùèõ ýòîé àëãåáðå.

Èõîáúåäèíåíèå ýòî ìíîæåñòâî ÷åòíûõ íàòóðàëüíûõ ÷èñåë,êîòîðîå íå ÿâëÿåòñÿ êîíå÷íûì è íå èìååò êîíå÷íîãî äîïîëíåíèÿ, à çíà÷èò, íå ÿâëÿåòñÿ ýëåìåíòîì äàííîé àëãåáðû.12Çàäà÷à 7. Ïîêàçàòü, ÷òî àëãåáðà, ðàññìîòðåííàÿ â ïðèìåðå 5, íå ÿâëÿåòñÿ σ -àëãåáðîé.Çàäà÷à 8. Ïîêàçàòü, ÷òî àëãåáðà âñåõ âåðòèêàëüíûõ öèëèíäðîâ Cv è àëãåáðà âñåõ ãîðèçîíòàëüíûõ öèëèíäðîâ Ch ,ðàññìîòðåííûå â ïðèìåðå 6, ÿâëÿþòñÿ σ -àëãåáðàìè.Ïîíÿòèå ïîäàëãåáðûσ -àëãåáðàè÷åñêèé àíàëîã.(îïðåäåëåíèå2)èìååòñâîéÎïðåäåëåíèå 5. Ïóñòü A σ -àëãåáðà ïîäìíîæåñòâìíîæåñòâà Ω. Ñåìåéñòâî B ïîäìíîæåñòâ ìíîæåñòâàΩ íàçûâàåòñÿ σ -ïîäàëãåáðîé σ -àëãåáðû A, åñëè âûïîëíåíûñëåäóþùèå óñëîâèÿ:1) ñåìåéñòâî B ÿâëÿåòñÿ ïîäñåìåéñòâîì σ -àëãåáðû A, ò.å.èç A ∈ B ñëåäóåò A ∈ A;2) ñåìåéñòâî B ÿâëÿåòñÿ σ -àëãåáðîé â ñìûñëå îïðåäåëåíèÿ4.Ñåìåéñòâà âñåõ âåðòèêàëüíûõ öèëèíäðîâ è âñåõ ãîðèçîíòàëüíûõ öèëèíäðîâ èç ïðèìåðà 6 ÿâëÿþòñÿ ðàçëè÷íûìè σ -ïîäàëãåáðàìè σ -àëãåáðû Amax ([0, 1] × [0, 1]) âñåõ ïîäìíîæåñòâ êâàäðàòà [0, 1] × [0, 1], à âîò àëãåáðà èç ïðèìåðà 4 ÿâëÿåòñÿ ïîäàëãåáðîé, íî íå σ -ïîäàëãåáðîé σ -àëãåáðûAmax (N) âñåõ ïîäìíîæåñòâ íàòóðàëüíîãî ðÿäà N (ñì.

ïðèìåð 7). Çàìåòèì, ÷òî ëþáàÿ σ -àëãåáðà ïîäìíîæåñòâ ïðîèçâîëüíîãî ìíîæåñòâà Ω ÿâëÿåòñÿ σ -ïîäàëãåáðîé σ -àëãåáðûAmax (Ω).Âîçâðàùàÿñü ê àíàëîãèè ñ ëèíåéíûìè ïðîñòðàíñòâàìè,çàìåòèì, ÷òî õîðîøèì àíàëîãîì ïîíÿòèÿ σ -àëãåáðû ÿâëÿåòñÿ ïîíÿòèå çàìêíóòîãî ïîäïðîñòðàíñòâà ëèíåéíîãî ïðîñòðàíñòâà, â êîòîðîì çàäàíà êàêàÿ-ëèáî ìåòðèêà. Çàìêíóòûì íàçûâàåòñÿ ïîäïðîñòðàíñòâî, êîòîðîå ñîäåðæèò ïðåäåëû âñåõ ïîñëåäîâàòåëüíîñòåé, ñîñòàâëåííûõ èç ýëåìåíòîâýòîãî ïîäïðîñòðàíñòâà. Ëåãêî ïðîâåðèòü, ÷òî ëþáîå ïîäïðîñòðàíñòâî â Rn ÿâëÿåòñÿ çàìêíóòûì (ïîýòîìó â ëèíåé13íîé àëãåáðå è íå ââîäèòñÿ ñïåöèàëüíî ýòî ïîíÿòèå). Íî âáåñêîíå÷íîìåðíûõ ïðîñòðàíñòâàõ ñóùåñòâóþò íåçàìêíóòûåïîäïðîñòðàíñòâà.  êà÷åñòâå ïðèìåðà ìîæíî ðàññìîòðåòüïîäïðîñòðàíñòâî P([0, 1]) âñåõ ïîëèíîìîâ â ëèíåéíîì ïðîñòðàíñòâå C([0, 1]) âñåõ íåïðåðûâíûõ ôóíêöèé íà îòðåçêå[0, 1] ñ ìåòðèêîé ρ(f, g) = supx∈[0,1] |f (x) − g(x)|, ïîñêîëüêó ëþáàÿ ôóíêöèÿ èç C([0, 1]) ÿâëÿåòñÿ ïðåäåëîì íåêîòîðîéïîñëåäîâàòåëüíîñòè ïîëèíîìîâ èç P([0, 1]) â ñèëó òåîðåìûÂåéåðøòðàññà.

 ëèíåéíîì ïðîñòðàíñòâå ñ ìåòðèêîé ìîæíîîïðåäåëèòü íå òîëüêî ñóììû êîíå÷íîãî ÷èñëà ýëåìåíòîâ, íîè ñ÷åòíûå ñóììû, ò.å. ðÿäû (ñ ïîìîùüþ ïðåäåëüíîãî ïåðåõîäà, òàê æå, êàê îïðåäåëÿþòñÿ îáû÷íûå ðÿäû). Ïðè ýòîìçàìêíóòîå ïîäïðîñòðàíñòâî ìîæíî îïðåäåëèòü êàê ïîäïðîñòðàíñòâî, êîòîðîå ñîäåðæèò âñå òàêîãî ðîäà ñóììû ñâîèõýëåìåíòîâ (ýòî ñëåäóåò èç ñòàíäàðòíîãî ïðåäñòàâëåíèÿ ïðåäåëà ëþáîé ñõîäÿùåéñÿ ïîñëåäîâàòåëüíîñòè â âèäå ñóììûðÿäà). Äàííîå çàìå÷àíèå äåëàåò óêàçàííóþ âûøå àíàëîãèþíàèáîëåå ïðîçðà÷íîé, ïîñêîëüêó σ -àëãåáðó ìîæíî îïðåäåëèòü êàê àëãåáðó, ñîäåðæàùóþ âñå ñ÷åòíûå ñóììû ñâîèõ ýëåìåíòîâ (ýòî ÷èòàòåëü äîëæåí áûë óñòàíîâèòü, ðåøàÿ çàäà÷ó6).Ïîñêîëüêó σ -àëãåáðà ýòî ÷àñòíûé ñëó÷àé àëãåáðû, äëÿëþáîãî íàáîðà σ -àëãåáð ìîæíî ðàññìîòðåòü èõ ïåðåñå÷åíèå(ñì. îïðåäåëåíèå 3), êîòîðîå â ñèëó òåîðåìû 1 ÿâëÿåòñÿ àëãåáðîé.

Çàìå÷àòåëüíî, ÷òî îïåðàöèÿ ïåðåñå÷åíèÿ íå ìîæåòâûâåñòè èç êëàññà σ -àëãåáð.Òåîðåìà 2. Ïåðåñå÷åíèå ëþáîãî íàáîðà σ -àëãåáð ïîäìíî-æåñòâ ïðîèçâîëüíîãî ìíîæåñòâà Ω ÿâëÿåòñÿ σ -àëãåáðîé.Äîêàçàòåëüñòâî. Ïóñòü {Aλ }λ∈Λ ïðîèçâîëüíûé íà-áîð σ -àëãåáð ïîäìíîæåñòâ ìíîæåñòâà Ω.  ñèëó òåîðåìû 1(è çàäà÷è 6) äîñòàòî÷íî ïîêàçàòü,÷òî äëÿ ëþáîãîTT ñ÷åòíîãîíàáîðà {Ai } ìíîæåñòâ èçT λ∈Λ Aλ ìíîæåñòâî i Ai ÿâëÿåòñÿ ýëåìåíòîì ñåìåéñòâà λ∈Λ Aλ .

Ïî îïðåäåëåíèþ ïðè êàæ-14Täîì λ ∈ Λ èìååì {Ai } ⊆ Aλ , à çíà÷èò,i Ai ∈ Aλ , ïîñêîëüêóTAσ-àëãåáðà.Ñëåäîâàòåëüíî,Aýëåìåíò ñåìåéñòâài iTλλ∈Λ Aλ . ¤Òî æå ðàññóæäåíèå, êîòîðîå ïîçâîëèëî èç òåîðåìû 1 ïîëó÷èòü ñëåäñòâèå 1, ïîçâîëÿåò âûâåñòè èç òåîðåìû 2 ñëåäóþùèé âàæíûé ðåçóëüòàò.Ñëåäñòâèå 2. Äëÿ ëþáîãî ñåìåéñòâà F ïîäìíîæåñòâïðîèçâîëüíîãî ìíîæåñòâà Ω ñóùåñòâóåò åäèíñòâåííàÿσ -àëãåáðà σ(F), îáëàäàþùàÿ ñëåäóþùèìè ñâîéñòâàìè :1) F ÿâëÿåòñÿ ïîäñåìåéñòâîì σ -àëãåáðû σ(F), ò.å. èç A ∈F ñëåäóåò A ∈ σ(F);2) σ(F) ÿâëÿåòñÿ σ -ïîäàëãåáðîé ëþáîé σ -àëãåáðû, ñîäåðæàùåé F â êà÷åñòâå ïîäñåìåéñòâà.Àëãåáðà σ(F) ÿâëÿåòñÿ ìèíèìàëüíîé σ -àëãåáðîé, ñîäåðæàùåé ñåìåéñòâî F, â òîì æå ñìûñëå, â êîòîðîì α(F) ÿâëÿåòñÿ ìèíèìàëüíîé àëãåáðîé, ñîäåðæàùåé ýòî ñåìåéñòâî. ðàìêàõ àíàëîãèè ñ ëèíåéíûìè ïðîñòðàíñòâàìèσ -àëãåáðà σ(F), ïîðîæäåííàÿ ñåìåéñòâîì F ïîäìíîæåñòâìíîæåñòâà Ω, ÿâëÿåòñÿ àíàëîãîì çàìûêàíèÿ ëèíåéíîé îáîëî÷êè lin(L0 ) ìíîæåñòâà L0 âåêòîðîâ ëèíåéíîãî ïðîñòðàíñòâà L ñ ìåòðèêîé (ìèíèìàëüíîãî çàìêíóòîãî ïîäïðîñòðàíñòâà ïðîñòðàíñòâà L, ñîäåðæàùåãî âñå âåêòîðû èç L0 ).

Âñèëó ýòîé àíàëîãèè σ -àëãåáðó σ(F) áóäåì êðàòêî íàçûâàòüσ -àëãåáðàè÷åñêîé îáîëî÷êîé ñåìåéñòâà F.Çàìåòèì, ÷òî â îòëè÷èå îò àëãåáðàè÷åñêîé îáîëî÷êè α(F)ñóùåñòâîâàíèå è åäèíñòâåííîñòü σ -àëãåáðàè÷åñêîé îáîëî÷êè σ(F) íåâîçìîæíî óñòàíîâèòü êîíñòðóêòèâíûì îáðàçîìäàæå â ñëó÷àå ñ÷åòíîãî ñåìåéñòâà F, ò.å. íåëüçÿ äàòü ÿâíîåîïèñàíèå òåõ ìíîæåñòâ, êîòîðûå âõîäÿò â σ -àëãåáðó σ(F).Íà ïåðâûé âçãëÿä êàæåòñÿ, ÷òî σ(F) ýòî ñåìåéñòâî âñåõñ÷åòíûõ ïåðåñå÷åíèé è îáúåäèíåíèé ìíîæåñòâ èç F, îäíàêîýòî íå òàê, êàê ïîêàçûâàåò ñëåäóþùèé ïðèìåð.15Ïðèìåð 8. Ïóñòü A àëãåáðà âñåõ ïðîìåæóòêîâ îòðåçêà [0, 1], ðàññìîòðåííàÿ â ïðèìåðå 5.

Характеристики

Тип файла
PDF-файл
Размер
307,5 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее