Советов Б.Я., Яковлев С.А. Моделирование систем (3-е изд., 2001) (1186218), страница 50
Текст из файла (страница 50)
К числу частныхзадач, решаемых при планировании машинных экспериментов, относятся задачи уменьшения затрат машинного времени на моделирование, увеличения точности и достоверности результатов моделирования, проверки адекватности модели и т. д.Машинный эксперимент. Эффективность машинных экспериментов с моделями Мм существенно зависит от выбора плана эксперимента, так как именно план определяет объем и порядок проведения вычислений на ЭВМ, приемы накопления и статистическойобработки результатов моделирования системы S. Поэтому основ207ная задача планирования машинных экспериментов с модельюМм формулируется следующим образом: необходимо получить информацию об объекте моделирования, заданном в виде моделирующего алгоритма (программы), при минимальных или ограниченных затратах машинных ресурсов на реализацию процесса моделирования.Таким образом, при машинном моделировании рациональнопланировать и проектировать не только саму модель Мм системыS, но и процесс ее использования, т.
е. проведение с ней экспериментов с использованием инструментальной ЭВМ.К настоящему времени в физике, биологии и т. д. сложиласьтеория планирования экспериментов, в которой разработаны достаточно мощные математические методы, позволяющие повыситьэффективность таких экспериментов [10,18,21, 33]. Но перенос этихрезультатов на область машинных экспериментов с моделямиМм может иметь место только с учетом специфики моделированиясистем на ЭВМ. Несмотря на то что цели экспериментальногомоделирования на ЭВМ и проведения натурных экспериментовсовпадают, между этими двумя видами экспериментов существуютразличия, поэтому для планирования эксперимента наиболее важное значение имеет следующее: 1) простота повторения условийэксперимента на ЭВМ с моделью Мм системы S; 2) возможностьуправления экспериментом с моделью Мы, включая его прерываниеи возобновление; 3) легкость варьирования условий проведенияэксперимента (воздействий внешней среды Е); 4) наличие корреляции между последовательностью точек в процессе моделирования;5) трудности, связанные с определением интервала моделирования(0, 7).Преимуществом машинных экспериментов перед натурным является возможность полного воспроизведения условий эксперимента с моделью исследуемой системы S.
Сравнивать две альтернативы возможно при одинаковых условиях, что достигается, например, выбором одной и той же последовательности случайныхчисел для каждой из альтернатив. Существенным достоинствомперед натурными является простота прерывания и возобновлениямашинных экспериментов, что позволяет применять последовательные и эвристические приемы планирования, которые могут оказаться нереализуемыми в экспериментах с реальными объектами.
Приработе с машинной моделью Ми всегда возможно прерываниеэксперимента на время, необходимое для анализа результатови принятия решений об его дальнейшем ходе (например, о необходимости изменения значений параметров модели Мы).Недостатком машинных экспериментов является то, что частовозникают трудности, связанные с наличием корреляции в выходных последовательностях, т. е. результаты одних наблюдений зависят от результатов одного или нескольких предыдущих, и поэтому208в них содержится меньше информации, чем в независимых наблюдениях.
Так как в большинстве существующих методов планированияэкспериментов предполагается независимость наблюдении, то многие из этих методов нельзя непосредственно применять для машинных экспериментов при наличии корреляции [18, 21, 29, 46, 53].Основные понятия планирования экспериментов. Рассмотрим основные понятия теории планирования экспериментов. В связи с темчто математические методы планирования экспериментов основанына кибернетическом представлении процесса проведения эксперимента, наиболее подходящей моделью последнего является абстрактная схема, называемая «черным ящиком».
При таком кибернетическом подходе различают входные и выходные переменные: хи х2, ......, хк; уи у2,..., У(. В зависимости от того, какую роль играет каждаяпеременная в проводимом эксперименте, она может являться либофактором, либо реакцией. Пусть, например, имеют место толькодве переменные: х и у. Тогда если цель эксперимента — изучениевлияния переменной х на переменную у, то х — фактор, а у — реакция.
В экспериментах с машинными моделями Мм системы 5" фактор является экзогенной или управляемой (входной) переменной,а реакция — эндогенной (выходной) переменной. Например, в агрегативной системе (А-схеме) факторами будут входные и управляющие сообщения, а реакциями — выходные.Каждый фактор хи г=1, к, может принимать в экспериментеодно из нескольких значений, называемых уровнями. Фиксированный набор уровней факторов определяет одно из возможных состояний рассматриваемой системы. Одновременно этот набор представляет собой условия проведения одного из возможных экспериментов.Каждому фиксированному набору уровней факторов соответствует определенная точка в многомерном пространстве, называемом факторным пространством.
Эксперименты не могут бытьреализованы во всех точках факторного пространства, а лишьв принадлежащих допустимой области, как, например, это показанодля случая двух факторов xt и х2 на рис. 6.1 (плоскость х101х2).Существует вполне определенная связь между уровнями факторов и реакцией (откликом) системы, которую можно представитьв виде соотношенияyi=ilfi(xi, х2, ..., хк), 1=1, т.Функцию \j/h связывающую реакцию с факторами, называютфункцией реакции, а геометрический образ, соответствующий функции реакции,— поверхностью реакции. Исследователю заранее неизвестен вид зависимостей if/h l=\,m, поэтому используют приближенные соотношения:#=<Р/(*1» х2> •••> хк), / = 1 , т.209Зависимости <pt находятся по данным эксперимента.
Последнийнеобходимо поставить так, чтобы при минимальных затратах ресурсов (например, минимальном числе испытаний), варьируя поспециально сформулированным правилам значения входных переменных, построить математическую модель системы и оценитьее характеристики.При планировании экспериментов необходимо определить основные свойства факторов. Факторы при проведенни экспериментовмогут быть управляемыми и неуправляемыми, наблюдаемыми и ненаблюдаемыми, изучаемыми и неизучаемыми, количественнымии качественными, фиксированными и случайными.Фактор называется управляемым, если его уровни целенаправленно выбираются исследователем в процессе эксперимента. Примашинной реализации модели Мм исследователь принимает решения, управляя изменением в допустимых пределах различных факторов.Фактор называется наблюдаемым, если его значения наблюдаются и регистрируются.
Обычно в машинном эксперименте с моделью Ми наблюдаемые факторы совпадают с управляемыми, так какнерационально управлять фактором, не наблюдая его. Но неуправляемый фактор также можно наблюдать. Например, на этапе проектирования конкретной системы 5 нельзя управлять заданными воздействиями внешней среды Е, но можно наблюдать их в машинномэксперименте. Наблюдаемые неуправляемые факторы получили название сопутствующих. Обычно при машинном эксперименте с моделью Л/„ число сопутствующих факторов велико, поэтому рационально учитывать влияние лишь тех из них, которые наиболеесущественно воздействуют на интересующую исследователя реакцию.Фактор относится к изучаемым, если он включен в модельМн для изучения свойств системы 5, а не для вспомогательныхцелей, например для увеличения точности эксперимента.Фактор будет количественным, если его значения — числовыевеличины, влияющие на реакцию, а в противном случае факторназывается качественным.
Например, в модели системы, формализуемой в виде схемы массового обслуживания (Q-схемы), количественными факторами являются интенсивности входящих потоковзаявок, интенсивности потоков обслуживания, емкости накопителей, количество обслуживающих каналов и т. д., а качественнымифакторами — дисциплины постановки в очередь, выбора из очереди, обслуживания заявок каналами и т. д. Качественным факторамв отличие от количественных не соответствует числовая шкала.Однако и для них можно построить условную порядковую шкалу,с помощью которой производится кодирование, устанавливая соответствие между условиями качественного фактора и числами натурального ряда.210Фактор называется фиксированным, если в эксперименте исследуются все интересующие экспериментатора значения фактора, а если экспериментатор исследует только некоторую случайную выборку из совокупности интересующих значений факторов, то факторназывается случайным.