Краткий очерк истории математики. Стройк (5-е издание) (1990) (1185896), страница 11
Текст из файла (страница 11)
(«халдейские») астрономы много сил положили на его исследование. Установление связей между греческой и вавилонской наукой в эпоху Селевкидов многое дало и в вычислительной, и в теоретической астрономии, и там, где наука Вавилона продолжала следовать древней календарной традиции, греческая наука смогла добиться некоторых из своих наиболее замечательных достижений. Самым древним из известных нам греческих достижений в теоретической астрономии является планетная теория Евдокса, уже знакомого нам в качестве вдохновителя Евклида. Это была попытка объяснить движение планет (вокруг Земли) с помощью четырех вращающихся концентрических сфер, каждая из которых имела особую ось вращения с концами, закрепленными в охватывающей сфере. Это было нечто новое и типично греческое, больше объяснение, чем регистрация небесных явлений. При всей своей внешней примитивности теория Евдокса заключала в себе основную идею всех планетных теорий вплоть до семнадцатого столетия — объяснение неправильностей видимого движения Луны и планет наложением круговых движений. Эта идея лежит в основе и вычислительной части современной динамической теории, поскольку мы вводим ряды Фурье.
За Евдоксом последовал Аристарх Самосский (ок. 280 г. до н. э.), «Коперник античности», которому Архимед приписывает гипотезу, что центром в движении планет является Солнце, а не Земля. У этой гипотезы в древности было мало приверженцев, хотя широко было распространено убеждение в том, что Земля вращается вокруг своей оси. Что гелиоцентрическая гипотеза имела мало успеха, объясняется преимущественно авторитетом Гиппарха, которого часто называют величайшим астрономом античности.
Гиппарх из Никеи вел наблюдения между 161 и 126 г. до н. э. Непосредственно от него до нас дошло немного — главным источником сведений о его достижениях является Птолемей, живший тремя столетиями позже. Многое в большом труде Птолемея, в «Альмагесте», может быть приписано Гиппарху, в частности применение эксцентрических кругов и эпициклов для объяснения движения Солнца, Луны и планет, а также открытые предварения равноденствий. Гиппарху приписывают также определение широты и долготы астрономическими средствами, по в древности ни разу не смогли так организовать научные работы, чтобы можно было в больших
масштабах выполнить съемку местности. (Ученые в древности попадались редко как в пространстве, так и во времени.) Труды Гиппарха тесно связаны с достижениями вавилонской астрономии, которая в его время достигла больших высот. Можно считать эти труды наиболее важным научным плодом грековосточных связей в эпоху эллинизма'),
11. Третий и последний период античного общества — период господства Рима. Рим завоевал Сиракузы в 212, Карфаген — в 146, Грецию — в 146, Месопотамию — в 64, Египет — в 30 г. до н. э. Все, чем римляне овладели на Востоке, включая Грецию, было низведено до положения колонии, управляемой римскими администраторами. Римское правление не затрагивало экономической структуры восточных стран, пока в срок поступали тяжелые налоги и другие поборы. Римская империя естественным образом расщепилась на западную часть с экстенсивным сельским хозяйством, где применялись покупные рабы, и на восточную часть с интенсивным сельским хозяйством, где рабов использовали только для домашнего хозяйства и на общественных работах. Несмотря на рост некоторых городов и на торговлю, охватывавшую все известные страны Запада, основой экономического строя Римской империи оставалось земледелие. Расширение рабовладельческого хозяйства в таком обществе было роковым для всякой оригинальной науки. Рабовладельцы как класс редко бывают заинтересованы в технических открытиях, отчасти потому, что рабы все делают дешево, отчасти потому, что они боятся давать рабам такие орудия, которые могут способствовать умственному развитию. Многие из правящего класса слегка занимались искусствами и науками, но такие стремления были залогом скорее посредственности, чем творческого мышления. Когда вместе с упадком торговли рабами стала хиреть экономика Рима, немного было людей, которые могли развивать даже посредственную науку предыдущих столетий.
Пока Римская империя сохраняла известную устойчивость, восточная наука, своеобразная смесь эллинистических и восточных составных частей, продолжала про
') Neugebauer О. Exact Science in Antiquity // Studies in Civilization. Univ. of Pennsylvania Bicentennial Conf. Philadelphia, 1942.—P. 22—31 и Neugebauer 0. The Exact Sciences in Antiquity.— Providence, R. I., 1952. Имеется русский перевод — см. библиографию на с. 84.
цветать. Постепенно снижалась оригинальность, слабела движущая сила, но установленный римлянами на столетия мир (pax Romana) позволял без помех заниматься традиционными теориями. В течение нескольких столетий с «римским миром» сосуществовал «китайский мир»— pax Sinensis. Евразийский континент за всю свою историю не имел такого долгого мирного периода, как при Антонинах в Риме и при династии Хань в Китае. Это облегчало проникновение знаний по континенту из Рима и Афин в Месопотамию, Китай и Индию. Эллинистическая наука, как и прежде, проникала в Китай и Индию, испытывая в свою очередь влияние науки этих стран. Отблеск вавилонской астрономии и греческой математики падал на Италию, Испанию и Галлию — тому примером распространение в Римской империи деления угла и часа на шестьдесят частей. Существует теория Ф. Вёпке (F. Woepcke), по которой распространение в Европе так называемых индийско-арабских цифр связано с неопифагорейскими школами поздней Римской империи. Возможно, что это верно, но если эти цифры настолько стары, то более вероятно, что на их распространение повлияла торговля, а не философия.
Александрия оставалась центром античной математики. Велись оригинальные исследования, хотя компилирование и комментирование все более становилось основным видом научной деятельности. Многие результаты античных математиков и астрономов дошли до нас в трудах этих компиляторов, и порой очень трудно выделить то, что они передают и что они открыли сами. Пытаясь проследить постепенный упадок греческой математики, мы должны учитывать и ее техническую сторону: неуклюжий геометрический способ выражения при систематическом отказе от алгебраических обозначений, что делала почти невозможным какое-либо продвижение «за» конические сечения. Алгебру и вычисления оставляли презренным людям Востока, на чье учение был нанесен тонкий слой греческой цивилизации. Однако неверно утверждение, что александрийская математика была чисто греческой в традиционном понимании Евклида — Платона: вычислительной арифметикой и алгеброй египетско-вавилонского типа занимались бок о бок с абстрактными геометрическими рассуждениями. Достаточно вспомнить о Птолемее, Героне и Диофанте, чтобы в этом убедиться. Объединяло различные расы и школы только пользование греческим языком.
12. Одним из самых ранних александрийских математиков римского периода был Никомах из Герасы (ок. 100 г.), чье «Арифметическое введение»— наиболее полное из сохранившихся изложений пифагорейской арифметики. Там рассматриваются большей частью те же вопросы, что и в арифметических книгах Евклида, но тогда, как у Евклида числа изображаются отрезками, Никомах пользуется арифметическими обозначениями и, если имеет дело с неопределенными числами, обычной речью. Полигональные и пирамидальные числа Никомаха оказали влияние на средневековую арифметику, главным образом через Боэция ').
Одно из крупнейших произведений этого второго александрийского периода — «Великое собрание» Птолемея, более известное под арабизированным названием «Алмагест» (ок. 150г.). «Алмагест» —астрономический труд высшего мастерства и весьма оригинальный, хотя многие из его идей идут от Гиппарха или от Кидинну и других вавилонских астрономов. В нем есть и тригонометрия с таблицей хорд для углов от 0° до 180°, соответствующая таблице синусов для углов от 0° до 90° через полградуса. Для синуса угла в 1° Птолемей нашел значение (1, 2, 50) = 1/60 +2/602 + 5/603 = 0,017268 (точное значение 0,017453...), для л его значение (3, 8, 30) = 377/120≈3,14166. В «Алмагесте» мы находим формулу для синуса и косинуса суммы и разности двух углов и зачатки сферической тригонометрии. Теоремы формулируются геометрически — наши современные тригонометрические обозначения идут лишь от Эйлера (восемнадцатый век). В «Алмагесте» мы находим и «теорему Птолемея» о четырехугольнике, вписанном в окружность, В «Планисферии» Птолемея рассматривается стереографическая проекция, а в его «Геометрии» положение на Земле определяется с помощью долготы и широты. Последние, таким образом, являются давним примером координат на сфере.
На стереографической проекции основана конструкция астролябии — прибора, который применяли для определения положения на Земле. Астролябия была известна в древности, и ею широко пользовались до введе
1) См. главу V
ния октанта, позже — секстанта, в восемнадцатом веке1).
Несколько старше Птолемея Менелай (ок. 100 г.). В его «Сферике» содержится геометрия сферы и рассматриваются сферические треугольники — предмет, которого нет у Евклида. Здесь мы находим «теорему Менелая» для треугольника в обобщенном для сферы виде. В астрономии Птолемея немало вычислений в шестидесятичных дробях, а трактат Менелая геометричен строго в духе евклидовой традиции.
К эпохе Менелая, возможно, относится и Герон, — во всяком случае мы знаем, что он точно описал лунное затмение 62 г.2). Герон был энциклопедистом, он писал на геометрические, вычислительные и механические темы, его произведения — любопытная смесь греческого и восточного. В своей «Метрике» он выводит «формулу Герона» для площади треугольника чисто геометрическим образом; сам результат приписывается Архимеду. В той же «Метрике» мы находим типично египетские «основные» дроби, например в приближении для √63=(7+ ½ +1/4 +1/8+ 1/16). Формулу Герона для объема усеченной пирамиды с квадратным основанием без труда можно свести к формуле, имеющейся в Московском папирусе. Напротив, определение объема пяти правильных многогранников у Герона — в духе Евклида.
13. Еще сильнее восточный колорит в «Арифметике» Диофанта (ок. 250 г.). Уцелели только шесть книг оригинала, общее их число — предмет догадок. Искусная трактовка в них неопределенных уравнений показывает, что древняя алгебра Вавилона или, быть может, Индии не только существовала под тонким слоем греческой цивилизации, но ее совершенствовали немногочисленные деятели эпохи. Как и когда это происходило, мы не знаем, как не знаем, кем был Диофант, — возможно, что он был эллинизированный вавилонянин. Его книга — один из наиболее увлекательных трактатов, сохранившихся от грекоримской древности.
') Michel H. Traite de 1'astrolabe.—Paris, 194 7. См. также Neugebauer 0. The Early History of the Astrolabe / Isis.— 1949.—V. 40.—P. 240—256.
2) Neugebauer O. Uber eine Methode zur Distanzbestimmung Alexandria — Rom bei Neron / Hist. fil. Medd. Danske Vid. Sels.— 1938.— V. 26, № 2.— P. 28 и след.
В собрание Диофанта входят весьма разнообразные задачи, а их решения часто в высшей степени остроумны. «Диофантов анализ» состоит в нахождении решений неопределенных уравнений вида Ах2 + Вх + С = у , Ах3 + Вх2 + Cx + D = y2 или систем таких уравнений. Типично для Диофанта то, что его интересуют только положительные рациональные решения. Иррациональные решения он называет «невозможными» и тщательно подбирает коэффициенты так, чтобы получались искомые положительные рациональные решения.
Среди этих уравнений мы обнаруживаем такие, как х2 — 26y2 = 1 и х2 — 30y2 = 1, теперь известные как «уравнения Пелля». У Диофанта есть несколько теорем теории чисел, как, например, теорема (III, 19), что произведение двух целых чисел можно двумя способами представить как сумму двух квадратов, если каждый сомножитель — сумма двух квадратов. Есть и теоремы о разбивке числа на сумму трех и четырех квадратов. У Диофанта мы впервые встречаем систематическое использование алгебраических символов. У него есть особые знаки для неизвестного, для минуса, для обратной величины. Эти знаки все еще скорее сокращения, чем алгебраические символы в нашем смысле (они образуют так называемую реторическую алгебру); для каждой степени неизвестного был особый символ1). Нет сомнения, что здесь перед нами не только арифметические вопросы вполне алгебраического характера, как в Вавилоне, но и хорошо развитые алгебраические обозначения, которые весьма способствовали решению задач значительно более сложных, чем любые ранее поставленные.
14. Последний из больших александрийских математических трактатов написан Паппом (конец третьего столетия). Его «Собрание» («Synagoge»)—нечто вроде учебника для изучающих греческую геометрию, с историческими справками, с улучшением и видоизменением известных теорем и доказательств. Скорее всего, трактат надо было читать вместе с оригинальными трудами, а не самостоятельно.