Главная » Просмотр файлов » Лекции. ММО. Сенько (all in one)

Лекции. ММО. Сенько (all in one) (1185303), страница 16

Файл №1185303 Лекции. ММО. Сенько (all in one) (2015 Лекции (Сенько)) 16 страницаЛекции. ММО. Сенько (all in one) (1185303) страница 162020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 16)

, ωn );ε = (ε1 , . . . , εn )- вектор положительных пороговыхкоэффициентов, задающих близость объектов по каждому изпризнаков;(p1 , . . . , pn )-вектор положительных параметров, характеризующихважность признаков,(γ1 , . . . , γn ) вектор положительных параметров, характеризующихважность объектов.Сенько Олег Валентинович ()МОТП, лекция 927 / 30Алгебраическая коррекцияДля того, чтобы описать условия существования корректногоалгоритма в алгебраическом замыкании подмножества алгоритмовfвычисления оценок введём дополнительные определения.

Пусть Mнекоторое множество допустимых объектов.Определение 5. Объекты su и sν с описаниями (xu1 , . . . , xun ) иf,(xν1 , . . . , xνn ) называются изоморфными относительно множества Mfесли для произвольного объекта s с описанием (a1 , . . . , an ) ∈ Mвыполняются равенство(| xu1 − a1 |, . . . , | xun − an |) = (| xν1 − a1 |, . .

. , | xνn − an |)Нетрудно видеть что корректный алгоритм в рамках моделивычисления оценок по формуле (7) не может существовать для задачиZ(I, Sec , Pt1 , . . . , PtL ) случаях, когда оказываются выполненнымиследующие два условия.Сенько Олег Валентинович ()МОТП, лекция 928 / 30Алгебраическая коррекцияв выборке Sec существует два объекта s0 и s00 , изоморфныхотносительно выборки эталонов See , которая вместе со своейинформационной матрицей образует начальную информацию I;объекты s0 и s00 принадлежат двум непересекающимся классам.Действительно в этом случае векторы оценок [Γ1 (s0 ), .

. . , ΓL (s0 )] и[Γ1 (s00 ), . . . , ΓL (s00 )] , вычисляемые произвольным оператором измодели АВО будут одинаковы. Следовательно никакое множествооператоров модели АВО не может вычислять базис впространстве вещественных матриц размера L × q.Будем называть задачу Z(I, Sec , Pt1 , . . . , PtL ) регулярной привыполнении трёх условий:никакие два класса полностью не совпадают, т.е. Kl0 6= Kl00 приl0 6= l00 ;никакие два объекта из Sec не являются изоморфнымиотносительно выборки эталонов See ;TSee Sec = ØСенько Олег Валентинович ()МОТП, лекция 929 / 30Алгебраическая коррекцияСправедлива следующая теорема.Теорема 2.

Алгебраическое замыкание подкласса алгоритмов моделиАВО, в которой оценки за классы вычисляются по формуле (5)корректно над множеством регулярных задач.Сенько Олег Валентинович ()МОТП, лекция 930 / 30Лекция 10Коллективные метод,бэггинг, бустинг, голосование по системам закономерностейЛектор – Сенько Олег ВалентиновичКурс «Математические основы теории прогнозирования»4-й курс, III потокСенько Олег Валентинович ()МОТП, лекция 101 / 22Содержание лекции1Коллектиные методы2бэггинг2бустинг3логические закономерности4Статистически взвешенные синдромы5метод комитетовСенько Олег Валентинович ()МОТП, лекция 102 / 22Коллективные методы ("бэггинг")Одним из способов получения ансамбля является использованиеалгоритмов, обученных по разным обучающим выборкам, которыевозникают в результате случайного процесса, лежащего в основеисследуемой задачи.

Обычно при решении прикладной задачи враспоряжении исследователя имеется обучающая выборкаSet = {s1 , . . . , sm } ограниченного объёма. Однако процесс генерациисемейства выборок из генеральной совокупности может бытьимитирован с помощью процедуры бутстрэп (bootstrap), котораяоснована на выборках с возвращениями из Set .

В результатеполучаются выборки Se∗bg , включающие объекты из обучающейвыборки Set . Однако некоторые объекты Set могут встречаться в Se∗bgболее одного раза, а другие объекты отсутствовать. Предположим, чтос помощью процедуры бутстрэп получено T выборок. C помощьюзаранее выбранного метода, используемого для обучения отдельныхалгоритмов распознавания, получим множество, включающее Tebg = {Abg , .

. . , Abg }.распознающих алгоритмов A1TСенько Олег Валентинович ()МОТП, лекция 103 / 22Коллективные методы "бэггинг"Для получения коллективного решения может быть использованпростейший комитетный метод, относящий объект в тот класс, кудаего отнесло большинство алгоритмов . Данная процедура носитназвание бэггинг (bagging), что является сокращением названияBootstrap Aggregating. Процедура бэггинг показывает высокий приростобобщающей способности по сравнению с алгоритмом, обученным спомощью базового метода по исходной обучающей выборке Set , в техслучаях, когда вариационная составляющая ошибки базового методавысока. К таким моделям относятся в частности решающие деревья инейросетевые методы.

При использовании в качестве базового методарешающих деревьев процедура бэггинг приводит к построениюансамблей решающих деревьев (решающих лесов).Основной идеей алгоритма бустинг является пошаговое наращиваниеансамбля алгоритмов. Алгоритм, который присоединяется к ансамблюна шаге k обучается по выборке, которая формируется из объектовисходной обучающей выборки Set .Сенько Олег Валентинович ()МОТП, лекция 104 / 22Коллективные методы "бустинг"В отличие от метода бэггинг объекты выбираются не равноправно, аисходя из некоторого вероятностного распределения, заданного навыборке Set .

Данное распределение вычисляется по результатамклассификации с помощью ансамбля, полученного на предыдущемшаге. Приведём схему одного из наиболее популярных вариантовметода бустинг AdaBoost (Adaptive boosting) более подробно. На1 )первом шаге присваиваем начальные значения весов (w11 , . . . , wmобъектам обучающей выборки. Поскольку веса имеютPвероятностную1интерпретаци, то для них соблюдаются ограничения mj=1 wj = 1,wj1 ∈ [0, 1].

Обычно начальное распределение выбирается1, j = 1, . . . , m. Выбираем число итераций T . Наравномерным wj1 = mитерации k генерируем выборку Sekbs из исходной выборки Set согласноk ). Обучаемраспределению задаваемому весами (w1k , . . . , wmebsраспознающий алгоритм Absk по выборке Sk .Сенько Олег Валентинович ()МОТП, лекция 105 / 22Коллективные методы, "бустинг".Pk kВычисляем взвешенную ошибку по формуле εk = mj=1 wj ej , гдеbskej = 1, если алгоритм Ak неправильно классифицировал объект sj иekj = 0 в противном случае.

В том случае, если εk ≥ 0.5 или εk = 0игнорируем шаг и заново генерируем выборку Sekbs исходя из весовых1коэффициентов wj1 = m, j = 1, . . . , m. В случае если εk ∈ (0, 0.5)εkвычисляем коэффициенты τk = 1−εkи пересчитываем веса объектов по формулеkwjk+1wjk (τk )1−ej=Pmk1−ejkj=1 wj (τk )(1)при j = 1, . . . , m.Процесс, задаваемый формулой (1), продолжается до тех пор, пока невыполнено T итераций . В результате мы получаем совокупность из Tbsраспознающих алгоритмов Abs1 , . . . , AT .Сенько Олег Валентинович ()МОТП, лекция 106 / 22Коллективные методы, "бустинг".Предположим, что нам требуется распознать объект s∗ .

Пустьk ∗βlk (s∗ ) = 1, если s∗ отнесён алгоритмом Absk в класс Kl , и βl (s ) = 0 в∗противном случае. Оценка объекта s за класс Kl вычисляется поформулеTX1∗Γl (s ) =ln βlk (s∗ ).τkk=1s∗Объектбудет отнесён к классу, оценка за которой максимальна.Описанный вариант метода носит название AdaBoost. M1.Эффективность процедур бустинга подтверждается многочисленнымиэкспериментами на реальных данных. В настоящее время существуетбольшое количество вариантов метода, имеющих разное обоснование.Сенько Олег Валентинович ()МОТП, лекция 107 / 22Коллективные методы, основанные на голосовании по системамзакономерностейОдним из эффективных подходов к решению задач прогнозирования ираспознавания является использование коллективных решений посистемам закономерностей. Под закономерностью понимаетсяраспознающий или прогностический алгоритм, определённый нанекоторой подобласти признакового пространства или связанный снекоторым подмножеством признаков.

В качестве примеразакономерностей могут быть приведены представительные наборы,являющиеся по сути подмножествами признаковых описаний,характерных для одного из распознаваемых классов. Аналогомпредставительный наборов в задач с вещественнозначнойинформацией являются логические закономерности классов. Подлогической закономерностью класса Kl понимается областьпризнакового пространства, имеющая форму гиперпараллелепипеда исодержащая только объекты из Kl .Сенько Олег Валентинович ()МОТП, лекция 108 / 22Логическая закономерностьРис 1. Пример логической закономерности.Сенько Олег Валентинович ()МОТП, лекция 109 / 22Логическая закономерностьЛогическая закономерность класса Kj , которую обозначим r(j),описывается с помощью предикатов видаr(j)P tir(j)= ”air(j)≤ Xi ≤ bi(2)где i = 1, .

. . , n. Отметим, что для несущественных дляr(j) r(j)закономерности r(j) признаков отрезок [ai , bi ] соответствуетобласти допустимых значений Xi . Для существенных признаковr(j) r(j)отрезок [ai , bi ] является некоторым подмножеством областидопустимых значений Xi . Полностью r(j) задаётся конъюнкциейпредикатов (2):r(j)Ptr(j) = P tiСенько Олег Валентинович ()& . . .

Характеристики

Тип файла
PDF-файл
Размер
7,89 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

2015 Лекции (Сенько)
_ Доп. материалы по лекциям (Сенько).7z
Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее