Главная » Просмотр файлов » Лекция 6. Нейросетевые методы. перцептрон Розенблатта_ многослойный перцептрон

Лекция 6. Нейросетевые методы. перцептрон Розенблатта_ многослойный перцептрон (1185308)

Файл №1185308 Лекция 6. Нейросетевые методы. перцептрон Розенблатта_ многослойный перцептрон (2015 Лекции (Сенько))Лекция 6. Нейросетевые методы. перцептрон Розенблатта_ многослойный перцептрон (1185308)2020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Лекция 6Нейросетевые методы,перцептрон Розенблатта, многослойный перцептронЛектор – Сенько Олег ВалентиновичКурс «Математические основы теории прогнозирования»4-й курс, III потокСенько Олег Валентинович ()МОТП, лекция 61 / 26Содержание лекции1Нейросетевые методы2перцептрон Розенблатта2многослойный перцептрон3метод обратного распространения ошибкиСенько Олег Валентинович ()МОТП, лекция 62 / 26Нейросетевые методыВ основе нейросетевых методов лежит попытка компьютерногомоделирования процессов обучения, используемых в живыхорганизмах. Когнитивные способности живых существ связаны сфункционированием сетей связанных между собой биологическихнейронов – клеток нервной системы.

Для моделированиябиологических нейросетей используются сети, узлами которыхявляются искусственные нейроны (т.е. математические моделинейронов), Можно выделить три типа искусственных нейронов:нейроны-рецепторы, внутренние нейроны и реагирующие нейроны.Каждый внутренний или реагирующий нейрон имеет множествовходных связей, по которым поступают сигналы от рецепторов илидругих внутренних нейронов.

Пример модели внутреннего илиреагирующего нейрона представлен на рисунке 1.Сенько Олег Валентинович ()МОТП, лекция 63 / 26Нейросетевые методыРис.1. Модель внутреннего или реагирующего нейрона.Представленный на рисунке 1 нейрон имеет r внешних связей, покоторым на него поступают входные сигналы u1 , .

. . , ur . Поступившиесигналы суммируются с весами w1 , . . . , wr . PНа выходе нейронавырабатывается сигнал Φ(z), где z = w0 + ri=1 wi ui , w0 - Pпараметрсдвига.Может быть использована также форма записи z = ri=0 wi ui ,где фиктивный «сигнал» u0 тождественно равен 1.Сенько Олег Валентинович ()МОТП, лекция 64 / 26Нейросетевые методыФункцию Φ(z) обычно называют активационной функцией. Могутиспользоваться различные виды активационных функций, включаяпороговую функцию, задаваемую с помощью пороговой величиныb: Φ(z) = 1 при z ≥ b, Φ(z) = 0 при z < b;- сигмоидная функция Φ(z) =константа;1,1+e−azгде a-вещественнаягиперболический тангенс;тождественное преобразование Φ(z) = z.Методы, основанные на использовании искусственных нейронов могутбыть использованы для решения самых разнообразных задачраспознавания.

При этом сигналы, поступающие на вход перцептрона,интерпретируются как входные признаки X1 , . . . , Xn .Сенько Олег Валентинович ()МОТП, лекция 65 / 26Перцептрон РозенблаттаПервой нейросетевой моделью стал перцептрон Розенблатта,предложенный в 1957 году. В данной модели используетсяединственный реагирующий нейрон. Модель, реализующая линейнуюразделяющую функцию в пространстве входных сигналов, может бытьиспользована для решении задач распознавания с двумя классами,помеченными метками 1 или -1.

В качестве активационной функциииспользуется пороговая функция: Φ(z) = 1 при z ≥ 0, Φ(z) = −1 приz < 0. Особенностью модели Розенблатта является очень простая, новместе с тем эффективная, процедура обучения, вычисляющаязначения весовых коэффициентов (w0 , . . . , wn ). Настройка параметровпроизводится по обучающим выборкам, совершенно аналогичных тем,которые используются для обучения статистических алгоритмов. Напервом этапе производится преобразование векторов сигналов(признаковых описаний) для объектов обучающей выборки. В наборисходных признаков добавляется тождественно равная 1 нулеваякомпонента.

Затем вектора описаний из класса K2 умножаются на -1.Вектора описаний из класса K1 не изменяютсяСенько Олег Валентинович ()МОТП, лекция 66 / 26Перцептрон РозенблаттаПроцедура обучения перцептрона. . Нулевое приближение вектора(0)(0)весовых коэффициентов (w0 , . . . , wn ) выбирается случайнымобразом Преобразованные описания объектов обучающей выборки Setпоследовательно подаются на вход перцептрона. В случае еслиописание x(k) , поданное на k-ом шаге классифицируется неправильно,то происходит коррекция по правилу w(k+1) = w(k) + x.

В случаеправильной классификации w(k+1) = w(k) . Отметим, что правильнойклассификации всегда соответствует выполнение равенства(w(k) , x(k) ) ≥ 0 , а неправильной (w(k) , x(k) ) < 0. Процедураповторяется до тех пор, пока не будет выполнено одно из следующихусловий:- достигается полное разделение объектов из классов K1 и K2 ;- повторение подряд заранее заданного числа итераций неприводит к улучшению разделения;- оказывается исчерпанным заранее заданный лимит итераций.Сенько Олег Валентинович ()МОТП, лекция 67 / 26Перцептрон Розенблатта. Многослойный перцептрон.Для описанной процедуры обучения cправедлива следующая теорема.Теорема.

В случае, если описания объектов обучающей выборкилинейно разделимы в пространстве признаковых описаний, топроцедура обучения перцептрона построит линейнуюгиперплоскость разделяющую объекты двух классов законечное число шагов.Отсутствие линейной разделимости двух классов приводит кбесконечному зацикливанию gроцедуры обучения перцептрона.Существенно более высокой аппроксимирующей способностьюобладают нейросетевые методы распознавания, задаваемыекомбинациями связанных между собой нейронов. Таким методомявляется Многослойный перцептрон.Сенько Олег Валентинович ()МОТП, лекция 68 / 26Многослойный перцептронВ методе Многослойный перцептрон сеть формируется из несколькихслоёв нейронов. В их число входит слой входных рецепторов,подающих сигналы на нейроны из внутренних слоёв. Слои внутреннихнейронов осуществляют преобразование сигналов.

Слой реагирующихнейронов производит окончательную классификацию объектов наосновании сигналов, поступающих от нейронов, принадлежащихвнутренним слоям.Обычно соблюдаются следующие правила формирования структурысети.Допускаются связи между только между нейронами,находящимися в соседних слоях.Связи между нейронами внутри одного слоя отсутствуют.Активационные функции для всех внутренних нейроновидентичны.Для решения задач распознавания с L классами K1 , . . . , KLиспользуется конфигурация с L реагирующими нейронами.Сенько Олег Валентинович ()МОТП, лекция 69 / 26Многослойный перцептронСхема многослойного перцептрона с двумя внутренними слоямипредставлена на рисунке 2.Отметим, что сигналы g1 , .

. . , gL , вычисляемые на выходереагирующих нейронов, интерпретируются как оценки за классыK1 , . . . , KL . Весовые коэффициенты w сопоставлены каждой изсвязей между нейронами из различных слоёв.Сенько Олег Валентинович ()МОТП, лекция 610 / 26Многослойный перцептронРассмотрим процедуру распознавания объектов с использованиеммногослойного перцептрона. Предположим, что конфигурациянейронной сети включает наряду со слоем рецепторов и слоемреагирующих нейронов также H внутренних слоёв искусственныхнейронов. Заданы также количества нейронов в каждом слое. Пусть n– число входных нейронов-рецепторов, r(h) - число нейронов ввнутреннем слое h.

На первом этапе вектор рецепторы формируют поинформации, поступающей из внешней среды, вектор входныхпеременных (сигналов) u01 , . . . , u0n . Отметим, что входные сигналыu11 , . . . , u0n могут интерпретироваться как признаки X1 , . . . , Xn в общейпостановке задачи распознавания.Предположим, что для i-го нейрона 1-го внутреннего слоя связь срецепторами осуществляется с помощью весовых коэффициентовw1i0 , . .

. , wni0 . Сумматор i-го нейрона Pпервого внутреннего слояi0вычисляет взвешенную сумму ξ = nt=0 wti0 u0t .Сенько Олег Валентинович ()МОТП, лекция 611 / 26Многослойный перцептронСигнал на выходе i-го нейрона первого внутреннего слоя вычисляетсяпо формуле u1i = Φ(ξ i0 ) . Аналогичным образом вычисляются сигналына выходе нейронов второго внутреннего слоя. Сигналы g1 , . . . , gLрассчитываются с помощью той же самой процедуры, котораяиспользуется при вычислении сигналов на выходе нейронов извнутренних слоёв. То есть при вычислении gi на первом шагесоответствующий сумматор вычисляет взвешенную суммуnXiHξ =wtiH uHt ,t=0iHw1iH , . . .

, wr(H)где- весовые коэффициенты, характеризующие связь i–го реагирующего нейрона с нейронами последнего внутреннего слояHH, uH1 , . . . , ur(H) - сигналы на выходе внутреннего слоя H. Сигнал навыходе i -го реагирующего нейрона вычисляется по формулеgi = Φ(ξ iH ). Очевидно, что вектор выходных сигналов являетсяфункцией вектора входных сигналов u0 (вектора признаков x) иматрицы весовых коэффициентов связей между нейронами.Сенько Олег Валентинович ()МОТП, лекция 612 / 26Аппроксимирующие способности многослойных перцептроновОдин реагирующий нейрон позволяет аппроксимировать области,являющиеся полупространствами, ограниченными гиперплоскостями.Нейронная сеть с одним внутренним слоем позволяет аппроксимировать произвольную выпуклую область в многомерномпризнаковом пространстве (открытую или закрытую).

Было доказанотакже, что МП с двумя внутренними слоями позволяетаппроксимировать произвольные области многомерного признаковогопространства. Аппроксимирующая способность способностьмногослойного перцептрона с различным числом внутренних слоёвпроиллюстрирована на рисунке 3. На рисунке области,соответствующие классам ω1 и ω2 разделяются с помощью простогонейрона, а также с помощью многослойных перцептронов с одним идвумя внутренними слоями.Сенько Олег Валентинович ()МОТП, лекция 613 / 26Аппроксимирующая способность многослойных перцептроновРис.3Сенько Олег Валентинович ()МОТП, лекция 614 / 26Метод обратного распространения ошибкиНаиболее распространённым способом обучения нейросетевыхалгоритмов является метод обратного распространения ошибки.Обозначим через α∗ = (α∗1 , .

Характеристики

Тип файла
PDF-файл
Размер
683,14 Kb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов лекций

2015 Лекции (Сенько)
_ Доп. материалы по лекциям (Сенько).7z
Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее