Главная » Просмотр файлов » Лекции. ММО. Сенько (all in one)

Лекции. ММО. Сенько (all in one) (1185303)

Файл №1185303 Лекции. ММО. Сенько (all in one) (2015 Лекции (Сенько))Лекции. ММО. Сенько (all in one) (1185303)2020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Задачи прогнозирования,обобщающая способность, байесовский классификатор,скользящий контрольЛектор – Сенько Олег ВалентиновичКурс «Математические методы обучения»Сенько Олег Валентинович ()ММО - основные понятия1 / 47Содержание лекции1Основные понятия теории прогнозирования по прецедентам2Обобщающая способность и эффект переобучения3Байесовский классификатор4Поиск оптимальных алгоритмов прогнозирования5Методы оценки обобщающей способности и скользящийконтрольСенько Олег Валентинович ()ММО - основные понятия2 / 47Задачи прогнозированияЗадачи диагностики и прогнозирования некоторой величины Y подоступным значениям переменных X1 , .

. . , Xn часто возникают вразличных областях человеческой деятельности:постановка медицинского диагноза или результатов лечения посовокупности клинических и лабораторных показателей;прогноз свойств ещё не синтезированного химическогосоединения по его молекулярной формул;диагностика хода технологического процесса;диагностика состояния технического оборудования;прогноз финансовых индикаторов;и многие другие задачиСенько Олег Валентинович ()ММО - основные понятия3 / 47Модели прогнозированияДля решения подобных задач могут быть использованы методы,основанные на использовании точных знаний.

Например, могутиспользоваться методы математического моделирования, основанныена использовании физических законов. Однако сложность точныхматематических моделей нередко оказывается слишком высокой.Кроме того при использовании физических моделей часто требуетсязнание различных параметров, характеризующих рассматриваемоеявление или процесс. Значения некоторых из таких параметров частоизвестны только приблизительно или неизвестны вообще. Все этиобстоятельства ограничивают возможности эффективногоиспользования физических моделей.Сенько Олег Валентинович ()ММО - основные понятия4 / 47Прогнозирования по прецендентамВ прикладных исследованиях нередко возникают ситуации, когдаматематическое моделирование, основанное на использовании точныхзаконов оказывается затруднительны, но в распоряженииисследователей оказывается выборка прецедентов - результатовнаблюдений исследуемого процесса или явления, включающихзначения прогнозируемой величины Y и переменных X1 , .

. . , Xn . Вэтих случаях для решения задач диагностики и прогнозирования могутбыть использованы методы, основанные на обучении по прецедентам.Сенько Олег Валентинович ()ММО - основные понятия5 / 47Прогнозирование по прецедентам. Генеральная совокупностьПредположим, что задача прогнозирования решается для некоторогопроцесса или явления F . Множество объектов, которые потенциальномогут возникать в рамках F , называется генеральной совокупностью,далее обозначаемой Ω . Предполагается, что прогнозируемая величинаY и переменные X1 , .

. . , Xn заданы на Ω. Однако значение Y длянекоторых объектов Ω может по разным причинам оказатьсянедоступным исследователю. При этом значения по крайней меречасти переменных X1 , . . . , Xn известны. Целью математическихметодов прогнозирования, рассматриваемых в курсе, являетсяпостроение алгоритма, вычисляющего недоступные значений Y поизвестным значениям переменных X1 , . .

. , Xn . Обычно генеральнаясовокупность рассматривается как множество элементарных событий,на котором заданы - алгебра событий Σ и вероятностная мера P . Тоесть генеральная совокупность рассматривается как вероятностноепространство hΩ, Σ, P i.Сенько Олег Валентинович ()ММО - основные понятия6 / 47Методы, основанные на обучении по прецедентамПоиск алгоритма, вычисляющего осуществляется по выборкепрецедентов, которая обычно является случайной выборкой объектовиз Ω с известными значениями Y, X1 , . . . , Xn , Выборку прецедентовтакже принято называть обучающей выборкой.Обучающая выборка имеет вид S̃t = {(y1 , x1 ), . . . , (ym , xm )}, гдеyj – значение переменной Y для объекта sj , j = 1, .

. . , m;xj – значение вектора переменных X1 , . . . , Xn для объекта sj ;m – число объектов в S̃t .Сенько Олег Валентинович ()ММО - основные понятия7 / 47Обучающая выборкаОбычно предполагается, что обучающая выборка можетрассматриваться как независимая выборка объектов из Ω. Инымисловами предполагается, что S̃t является элементом декартовапроизведения Ωm = Ω× .

. . ×Ω. При этом предполагается, что на Ωmзадана σ-алгебра Σm , содержащая всевозможные декартовыпроизведения вида a1 × . . . ×am , где ai ∈ Σ, i = 1, . . . , m, ивероятностная мера P m , удовлетворяющая условиюP m (a1 × . . . ×am ) =mYP (ai ).i=1Сенько Олег Валентинович ()ММО - основные понятия8 / 47Методы, основанные на обучении по прецедентамВ процессе обучения производится поиск эмпирическихзакономерностей, связывающих прогнозируемую переменную Y спеременными X1 , . .

. , Xn . Данные закономерности далее используютсяпри прогнозировании. Методы, основанные на обучении попрецедентам, также принято называть методами машинного обучения(machine learning).Сенько Олег Валентинович ()ММО - основные понятия9 / 47Типы прогнозируемых величинПрогнозируемая величина Y может иметь различную природу:принимать значения из отрезка непрерывной оси;принимать значения из конечного множества;являться кривой, описывающей вероятность возникновениянекоторого критического события до различных моментоввремени.Задачи, в которых прогнозируемая величина принимает значения измножества, содержащего несколько элементов, принято называтьзадачей распознавания. Например, к задачам распознавания относятсязадачи прогнозирования категориальных переменных.Сенько Олег Валентинович ()ММО - основные понятия10 / 47Примеры задач машинного обученияЗадача распознавания (классификации) ириса на три класса.

Здесьцелевая переменная Y ∈ {setosa, versicolor, virginica}, признакиX1 , . . . , X4 ∈ R.Классы:SetosaVersicolorVirginicaПризнаки:длина чашелистика (см)ширина чашелистика (см)длина лепестка (см)ширина лепестка (см)Данные: http://archive.ics.uci.edu/ml/datasets/IrisСенько Олег Валентинович ()ММО - основные понятия11 / 47Примеры задач машинного обученияЗадача распознавания рукописных цифр. Целевая переменнаяY ∈ {0, 1, .

. . , 9}, признаки X1 , X2 , . . . , X784 ∈ [0, 255] – пикселыизображения размера 28×28.Примеры объектов:Данные: http://yann.lecun.com/exdb/mnist/Сенько Олег Валентинович ()ММО - основные понятия12 / 47Примеры задач машинного обученияЗадача прогноза стоимости жилья в различныхпригородахБостона(задачавосстановлениярегрессии).Целевая переменная Y – цена жилья. Признаки:уровень криминала в районеконцентрация окисей азотадоля жилья, построенного до 1940 годасреднее расстояние до основных районов концентрации рабочихместуровень налогообложенияотношение числа учителей к числу учеников в школахи другиеДанные: http://archive.ics.uci.edu/ml/datasets/HousingСенько Олег Валентинович ()ММО - основные понятия13 / 47Способы поиска закономерностейОсновным способом поиска закономерностей является поиск внекотором априори заданном семействе алгоритмов прогнозированияM̃ = {A : X̃ → Ỹ } алгоритма, наилучшим образомаппроксимирующего связь переменных из набора X1 , .

. . , Xn спеременной Y на обучающей выборке, гдеX̃ – область возможных значений векторов переменных X1 , . . . , Xn ;Ỹ – область возможных значений переменной Y .Пусть λ[yj , A(xj )] – величина «потерь», произошедших в результатеиспользования A(xj ) в качестве прогноза значения Y . Тогда одним изспособов обучения является минимизация функционалаэмпирического риска на обучающей выборке:m1 Xλ[yj , A(xj )] → min .Q(S̃t , A) =mA∈M̃j=1Сенько Олег Валентинович ()ММО - основные понятия14 / 47Частные случаи функции потерьПри прогнозировании непрерывных величин могут использоватьсяλ[yj , A(xj )] = (yj − A(xj ))2 – квадрат ошибки,λ[yj , A(xj )] = |yj − A(xj )| – модуль ошибки.В случае задачи распознавания функция потерь может быть равной 0при правильной классификации и 1 при ошибочной.

При этомфункционал эмпирического риска равен числу ошибочныхклассификаций.Сенько Олег Валентинович ()ММО - основные понятия15 / 47Примеры поиска закономерностейРассмотрим задачу восстановления регрессии по одному признаку.Здесь Ỹ = R, X̃ = R. Поиск зависимости между регрессионнойпеременной Y и признаком X в рамках семейства отображений M̃осуществляется с помощью минимизации функционала эмпирическогориска с функцией потерь λ[y, A(x)] = (y − A(x))2 (т.н.

методнаименьших квадратов).Поиск зависимости в семействе Поиск зависимости в семействелинейных функцийкубических функцийM̃ = {y = ax + b, a, b ∈ R}:M̃ = {y = ax3 + bx2 + cx + d,a, b, c, d ∈ R}:500−5−5−10−10−15−15−20−20−25−25−30−3−2−10Сенько Олег Валентинович ()123−30−3ММО - основные понятия−2−1012316 / 47Примеры поиска закономерностейРассмотрим задачу классификации на два класса по двум признакам.Здесь Ỹ = {1, 2}, X̃ = R2 .Поиск зависимости в семействе линейных разделителей:(1, если ax1 + bx2 + c ≥ 0,y=2, иначе.3210−1−2−3−3−2−101Сенько Олег Валентинович ()23ММО - основные понятия17 / 47Обобщающая способностьТочность алгоритма прогнозирования на всевозможных новых неиспользованных для обучения объектах, которые возникают врезультате процесса, соответствующего рассматриваемой задачепрогнозирования, принято называть обобщающей способностью.Иными словами обобщающую способность алгоритма прогнозированияможно определить как точность на всей генеральной совокупности.Мерой обобщающей способности служит математическое ожиданиепотерь по генеральной совокупности EΩ {λ[Y, A(x)]}.Сенько Олег Валентинович ()ММО - основные понятия18 / 47Обобщающая способностьОбобщающая способность может быть записана в видеZEΩ {λ[Y, A(x)]} =E{λ[Y, A(x)]|x}p(x)dx1 .

Характеристики

Тип файла
PDF-файл
Размер
7,89 Mb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов лекций

2015 Лекции (Сенько)
_ Доп. материалы по лекциям (Сенько).7z
Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее