Диссертация (1174231), страница 23
Текст из файла (страница 23)
1173–1179.150156. Lithium induces clearance of protease resistant prion protein in prion-infectedcells by induction of autophagy / A. Heiseke [et al.] // J. Neurochem. — 2009. —Vol. 109. — Р. 25–34.157. Lithiuminhibitshepaticgluconeogenesisandphosphoenolpyruvatecarboxykinase gene expression / F. Bosch [et al.] / J. Biol. Chem. — 1992. —Vol. 267(5). — Р. 2888–2893.158. Lithium intoxication: Incidence, clinical course and renal function — a population-based retrospective cohort study / M.
Ott, B. Stegmayr, E. Salander Renberg,U. Werneke // J Psychopharmacol. — 2016. — Oct, 30(10). — Р. 1008–1019.159. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation / M. Basselin [et al.] // J. Lipid.Res. — 2010.
— Vol. 51(5). — Р. 1049–1056.160. Lithium posttreatment confers neuroprotection through glycogen synthase kinase3beta inhibition in intracerebral hemorrhage rats / J. Zheng [et al.] // J.Neurosurg. — 2016. — Oct 14. — Р. 1–9.161. Lithium prevents and ameliorates experimental autoimmune encephalomyelitis /P. De Sarno [et al.] // J. Immunol. — 2008. — Vol. 181(1). — Р. 338–345.162. Lithium prevents cell apoptosis through autophagy induction / H. Kazemi,A. Noori-Zadeh, S. Darabi, F. Rajaei // Bratisl. Lek Listy.
— 2018. —Vol. 119(4). — Р. 234–239.163. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells / B. Bosche [et al.] //Biochem Biophys Res Commun. — 2013. — Vol. 434(2). — Р. 268–272.164.
Lithium prevents stress–induced reduction of vascular endothelium growth factorlevels / R. Silva [et al.] // Neurosci Lett. — 2007. — Vol. 429(1). — Р. 33–38.165. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation / R. Hashimoto [et al.] // J. Neurochem. — 2002.
—Vol. 80(4). — Р. 589–597.151166. Lithium reduces Gsk3b mRNA levels: implications for Alzheimer’s Disease /C. T. Mendes [et al.] // J. Eur. Arch. Psychiatry Clin. Neurosci. — 2009. —Vol. 259(1). — Р. 16–22.167. Lithium reduces ischemia-induced hippocampal CA1 damage and behavioral deficits in gerbils / Q. Bian [et al.] // J. Brain. Res.
— 2007. — Vol. 1184. —Р. 270–276.168. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations / S. Lovestone [et al.] // Biol. Psychiatry. — 1999. —Vol. 45(8). — Р. 995–1003.169. Lithium regulates hippocampal neurogenesis by ERK pathway and facilitates recovery of spatial learning and memory in rats after transient global cerebral ischemia / X. B. Yan [et al.] // Neuropharmacology.
— 2007. — Vol. 53(4). — Р. 487–495.170. Lithium restores neurogenesis in the subventricular zone of the Ts65Dn mouse,a model for Down syndrome / P. Bianchi [et al.] // Brain. Pathol. — 2010. —Vol. 20(1). — Р. 106–118.171. Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo / J. S. Kim [et al.] // J. Neurochem. —2004. — Vol.
89(2). — Р. 324–336.172. Lithium stimulates progenitor proliferation in cultured brain neurons / R. Hashimoto [et al.] // Neuroscience. — 2003. — Vol. 117(1). — Р. 55–61.173. Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington’s disease / H. Wei [et al.] // Neuroscience. — 2001. — Vol. 106(3).
—Р. 603–612.174. Lithium therapy improves neurological function and hippocampal dendriticarborization in a spinocerebellar ataxia type 1 mouse model / K. Watase [et al.] //PLoS Med. — 2007. — Vol. 4(5). — Р. 182.175. Lithium treatment alters brain concentrations of nerve growth factor, brainderived neurotrophic factor and glial cell line-derived neurotrophic factor in a rat152model of depression / F.
Angelucci, L. Aloe, P. Jimenez-Vasquez, A. A. Mathe //Int. J. Neuropsychopharmacol. — 2003. — Vol. 6. — Р. 225–231.176. Lithium treatment and risk of dementia / L. V. Kessing, L. Sondergard, J. L. Forman, P. K. Andersen // Arch. Gen. Psychiatry. — 2008. — Vol. 65(11). —Р. 1331–1335.177. Lithium treatment attenuates muscarinic M(1) receptor dysfunction / T. K. Creson[et al.] // Bipolar Disord.
— 2011. — Vol. 13(3). — Р. 238–249.178. Lithium treatment decreases blood pressure in genetically hypertensive rats /L. Y. Koda, W. J. Shoemaker, G. Baetge, F. E. Bloom // Eur. J. Pharmacol. —1981. — Vol. 76(4). — Р. 411–415.179. Lithium upregulates vascular endothelial growth factor in brain endothelial cellsand astrocytes / S. Guo [et al.] // Stroke. — 2009. — Vol. 40(2). — Р. 652–655.180. Lithium, but not valproate, induces the serine/threonine phosphatase activity ofprotein phosphatase 2A in the rat brain, without affecting its expression / S. Tsuji,[et al.] // J.
Neural. Transm (Vienna). — 2003. — Vol. 110.181.Lithium, valproate, and carbamazepine prescribing patterns for long-term treatment of bipolar I and II disorders: A prospective study / L. Musetti [et al.] // Hum.Psychopharmacol. — 2018. — Nov. 33(6). — Р. 2676.182. Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases / A. Wada, H.
Yokoo, T. Yanagita, H. Kobayashi //J. Pharmacol. Sci. — 2005. — Vol. 99(4). — Р. 307–321.183. Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia isassociated with antiinflammatory effects and enhanced proliferation and survivalof neural stem/progenitor cells / H.
Li [et al.] // J. Cereb. Blood. Flow. Metab. —2011. — Vol. 31(10). — Р. 2106–2115.184. Low proliferation and differentiation capacities of adult hippocampal stem cellscorrelate with memory dysfunction in humans / R. Coras [et al.] // Brain. —2010. — Vol. 133(11). — Р. 3359–3372.185. Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease / K.
Ide [et al.] // Nutrition. — 2015. — Vol. 31(2). — Р. 406–408.153186. Ma, J. Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia / J. Ma, G. Y. Zhang // Neurosci Lett. —2003. — Vol. 348(3). — Р. 185–189.187. Malhi, G. S. Therapeutic mechanisms of lithium in Bipolar Disorder: Recent advances and current understanding / G. S. Malhi, T.
Outhred // CNS Drugs. —2016. — Vol. 30. — Р. 931–949.188. Manji, H. K. Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS invivo: a role for neurotrophic and neuroprotective effects in manic depressive illness / H. K. Manji, G. J. Moore, G. Chen // J. Clin. Psychiatry. — 2000. —Vol.
61 (suppl. 9). — Р. 82–96.189. Manji, H. K. Pkc, map kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers / H. K. Manji, G. Chen // Mol. Psychiatry. — 2002. —Vol. 7 (suppl. 1). — Р. 46–56.190. Mauer, S. Standard and trace-dose lithium: a systematic review of dementia prevention and other behavioral benefits / S. Mauer, D. Vergne, S. N. Ghaemi // AustN Z J Psychiatry.
— 2014. — Vol. 48(9). — Р. 809–818.191. Meffre, D. Lithium chloride stimulates PLP and MBP expression inoligodendrocytes via Wnt/β-catenin and Akt/CREB pathways / D. Meffre, C.Massaad, J. Grenier // Neuroscience. — 2015. — Vol. 284. — Р. 962–971.192. Modeling bipolar disorder in mice by increasing acetylcholine or dopamine:chronic lithium treats most, but not all features / J. van Enkhuizen, M. MiliennePetiot, M. A. Geyer, J. W. Young // Psychopharmacology (Berl). — 2015. —Vol.
232(18). — Р. 3455–67.193. Molecular effects of lithium are partially mimicked by inositol-monophosphatase(IMPA)1 knockout mice in a brain region-dependent manner / O. Damri [et al.] //Eur. Neuropsychopharmacol. — 2015 — Mar; 25(3). — Р. 425–34.194. Mood stabilizers regulate cytoprotective and mRNA-binding proteins in the brain:long-term effects on cell survival and transcript stability / G.
Chen, L. D. Huang,154W. Z. Zeng, H. K. Manji // Int. J. Neuropsychopharmacol. — 2001. — Vol. 4. —Р. 47–64.195. Myint, A. M. Network beyond IDO in psychiatric disorders: Revisitingneurodegeneration hypothesis / A. M. Myint, Y. K. Kim // Prog. Neuropsychopharmacol. Biol.
Psychiatry. — 2014. — Vol. 48. — Р. 304–313.196. Nahman, S. Effects of lithium on lipopolysaccharide-induced inflammation in ratprimary glia cells / S. Nahman, R. H. Belmaker, A. N. Azab // Innate Immun. —2012. — Vol. 18(3). — Р. 447–458.197. Neuroprotective effect and cognitive outcome of chronic lithium on traumaticbrain injury in mice / Z. F.
Zhu, Q. G. Wang, B. J. Han, C. P. William // BrainRes Bull. — 2010. — Vol. 83(5). — Р. 272–277.198. Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress / R. Nciri [et al.] // Int. J. Neuropsychopharmacol.