Главная » Просмотр файлов » Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости

Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости (1159534), страница 34

Файл №1159534 Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости (Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости) 34 страницаН.А. Слёзкин - Динамика вязкой несжимаемой жидкости (1159534) страница 342019-09-18СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 34)

Если в рассматриваемой выше задаче о движении шара в неограниченной жидкости обратим движение, т. е, на всю жидкость и на шар наложим поступательное движение в направлении, обратном движению шара, функция тока которого представляется в виде (7,!9) з) Г а т чек Э., Вязкость жидкостей, ГТТИ, 1932, стр. 52. 182 движвниа пеи малых числах ввйнольдсь. метод стокса [гл. ч то, складывая функцшо ф, с функцией ф(7.12), получим решение задачи об обтекании неподвижного шара неограниченным потоком вязкой жидкости: ф = — У з! и 0 гь —, й' — — ай -+ — ), /1: 3 аз! 'ь2 4 4!г)' /! За аль '! 2 414 4Я~) ' За аз! Оз — Уз!п 0 ! — — —— 4!7 4Дз) (7.20) Рис.

48. Рпс. 47. мулах (7.12) и (7.20) лля функции тока выражения з!пз0 имеет место симметрия линий тока по отношению к диаметральной плоско. сти, перпендикулярной к основной скорости движения. Подставляя в выражение (7.20) для функции тока Й з1п 0 =- г, получим функцию тока в цилиндрических коорлинатах За азХ ф= — — иг (1 — — — + — ). 2 (, 2 17 2Ф)' (7.21) Используя соотношения (12.1) главы !Ч, получим выражения для компонент скорости в цилиндрических координатах 1дф 3 агат аз! о = — — — — ' = — У вЂ”. - (! -- — ), где 4 Ё (, Дм)' 1де Г 3 а аз! 3 агаl ...

—.. и(1 —, -+ )+ — (г —,!1 е=-;д,= '( 2Л м) 4 1Зз(, На основании полученных решений (7.20) можно произвести сравнительную оценку поряака величин отбрасываемых квадратичных членов инерции по отношению к тем слагаемым, которые были сохранены в уравнениях движения.

Так, например, в дифференциальном уравнении, отвечающем сферическому радиусу К, было отброшено Примерный вид линий тока, отвечающих функции тока (7.20) относительного движения жилкости, показан на рис. 47. Линии тока, отвечающие абсолютному движению жилкости, прелставляемому функцией тока (7.12), показаны на рис. 48. Благодаря наличию в фор- ,В 7) движянив шлоь в няогоаничвнной жидкости 133 доч слагаемое род — , которое на основании (7.20) будет представляться дР ' в виде дол 3 соз'В г азсг 3 а авз ро — = — раУз — (1 — — ) ~1 — — — + — ).

(7.23) д дх) 2 и (, Ф)1 2 А' А)' В этом же уравнении было сохранено слагаемое — —, обус- дВВ 17в з1п В дз ловленное вязкостью, которое на основании (7.3) и (7.13) будет равно и д770 до соз 0 да зш В дз д17 — ' = — = — ЗарУ вЂ”. (7.24) Составляя атно|пенне модулей левых и правых частей (7.23) и (7.24), получим: до, дР~ 1 ааУ Р (' за аз 2аз ав') дд 2 Н а 1 2Ф Дч Лз 217'У' — = — — — ( соз В111 — — — — + — — — 1.

(7.25) дР На основании полученного равенства (7.25) мы заключаем, что даже при Й= — '( 1 (7.26) порядок отбрасываемых квадратичных членов инерции мал по сравнению с сохрананными членами в уравнениях Стокса не во всех точках области, занятой жидкостью. Вблизи поверхности сферы выран0ение в скобке (7.25) обрашается в нуль, и поэтому отбрасывание квадратичных членов инерции в уравнениях движения до некоторой степени приближения может считаться справедливым, но на значительных расстояниях от сферы отбрасывание квадратичных членов с точки зрения проведенной оценки (7.25) нельзя считать вполне законным.

Обратим внимание на то, что высказанные заключения о возможности отбрасывания квадратичных членов инерции основаны на сравнительной оценке порядка лишь отдельных слагаемых, вычисленных после решения приближенных уравнений Стокса. Поэтому эти ааключения нельзя рассматривать как абсолютный критерий применимости приближенных уравнений Стокса. Критерием возможности использования приближенных уравнений Стокса могут служить только результаты эксперимента, ревультзты сравнения вычисленных значений, наприиер силы сопротивления шара, с результатами непосредственного еа измерения. На основании многочисленных экспериментов установлено, что формула Стокса (7.17) может считаться ааконной длв чисел рейнольдса, меньших половины. гоэ движвнив пги малых числах овйнольдсл.

метод стокса (гл. ч $8. Вращение шара в вязкой жидкости Приближенные дифференциальные уравнения Стокса установившегося движения несжимаемой жидкости в цилиндрических координатах соглзсно соотношениям (7.1) главы !Ч будут представляться в виде др / о 2 — т дг ' ( " гз гз дт l' др Г от 2 до„! ,— =р (бо — — + — „ де ( гт „з дт ) 1 г дл до„ог ! до до, — "+ — "+ — — '+ — ' == О. дг г г дт да (8.1) Будем предполагать, что траектории всех частиц суть окружности с центрами на оси г, т. е.

о„= — О, о,— О. (8.2) При этом предположении из уравнения яесжимаемости (8,!) будем иметь до —" =- О. дт (8.3) Если считать давление р не зависящим от тч то для единственной компоненты скорости о„ получим из (8.1) следуюг~ щее дифференциальное уравнение: при й=а от — — аг=аа яви (8.6) бог — —" ,= — О. (8.4) Учитывая выражение (6.12) главы П оператора Лапласа в сферических координатах и (8.3), дифференциальное уравнение (8.4) можно представить в виде дзо 2 до ! дзо дА~~+,9 д!3 + Д! дез + Рассмотрим теперь задачу о вращении шара в безграничной вязкой жидкости с постоянной угловой скоростью а вокруг оси а (рис.

49). Напишем условие прилипания частиц жидкости к поверхности шара: ВРАщвннв ШАРА В ВязкОЙ жидкости 185 й 8! Подставляя значение о из (8.8) в (8.5), получим обыкновенное дифференциальное уравнение а'г 2 АУ 2 ,!!7З !Р «!р !Рь — + — — — — У= О. Решение етого уравнения представляется в виде Х С)7+ с (8.9) )Аля удовлетворения граничного условия (8.7) на бесконечности необходимо полоокитгп С, = О. Используя граничное условие прилипання (8.6), получим: С =воз. Таким образом, решение рассматриваемой задачи о вращении шло* в неограниченной вязкой жидкости будет представляться в зиле вао о!и 0 ко (8.10) На основании (6.9) главы В и предположений (8.2) и (8.3) для касательных компонент напряжения будем иметь: до о Р до ° =-.Ы вЂ” Ь) "=;( —,' — "«8) Подставляя значение о из (8.10); получим: р =О, (р и)„= -Зов вп В, рто=О.

(8.11) Лля вычисления результирующего момента сил сопротивления вращению шара в вязкой жидкости необходимо выражение (8.11) для (р в)„ умножить на злеиент поверхности аойпВо(Вс(р и на плечо относительно оси а з!п 0 и проинтегрировать по всей поверхности шара. В реаультате мы получим: У.„= ~ ~ (ртп)оааз!ВВВдВФо= = — бпрвао ~ ыпзВЫВ = — 8прваз. (8.!2) о Будем полагать, что на бесконечном удалении от шара скорость жидкости обращается в нуль: при )7=по От=О. (8.7) Вид граничного условия (8.6) указывает на возможность искать решение дифференциального уравнения (8.5) в виде от = шп07Я), (8.8) 136 движзниз пги малых числах гзйнольдсл.

мвтод стокса [гл. т Таким образом, при решении задачи о вращении шара в неогранкченной вязкой жидкости на основе приближенных уравнений, без учета квадратичных членов инерции момент сил сопротивления вязкой жидкости пропорционален первой степени угловой скорости вращения. Е 9. Движение вязкой жидкости в коническом днффузоре Рассмотрим движение вязкой жидкости в коническом лиффузоре в предположениях: 1) жидкость считается несжимаемой, 2) движевие предполагается установившимся и осесимметричным, 3) действием массовых сил и квадратичными членами инерции можно пренебречь и 4) движение частиц является строго радиальным, т.

е. от — О Лз1П В ддэ (9.1) При этих предположениях функция тока булет удовлетворять диф- ференциальному уравнению Стоков (9.2) ов)=о и, кроме того, не будет зависеть от переменного гс. Учитывая выражение (7.2) оператора Стокса и независимость функции тока от К, получим: зжа К~ ! НФ~ (9.3) '= 17з ЛВ1.1 В,~В) Введем новое независимое переменное, полагая соз В =- -.. (9.4) Тогда из (9.2) и (9.3) получилп 1 .,з ьпф 7)7)ф ' б(1 2) +(1 -Я) (1 т ) ~ 9 1 1 изр Ж 1 и'"т «тз ~ лтз лз лмр 1 атз , бф+(1 —:) — '1=9, лтз 1 или (1 — ) ~„+бф=С,+Сят. леф 9.5) Легко видеть, что частное решение дифференциального уравнения (9.5) с правой частью представляется в виде ф»= — (С,+ Сзс) = А+Вт.

Таким образом, дифференциаль е уравнение (9.2) будет предстлвляться в виде 9 9) движвнив вязкой жилкости в коничвском диеетзогв 187 Проверкой можно убедиться, что частное решение дифференциального уравнения (9.5) без правой части будет иметь вид ф» = С(» —:3). Для построения второго частного решения однородного уравнения положим: фз = ф»и (»). Тогда будем иметь: 2(1 — 3»э) — +(1 — »3) — = О, "% а'и = — 2й 1!и (» — »з)!.

Лл гз л'» ( — »1)з ' !3 1+» 3»1 — 21 и =Р ~ (»з-+Сз — Р ( 4!и !— 1+2»(! 1))+Сз. Таким образом, общее решение дифференциального уравнения (9.5) преаставится в виде ф = л+8»+с( —; )+ +Р ~ — (» — »з) !п — + + — »э — 1~. (9.6) Обозначим угол раствора конического диффузора бе (рис.

50), Рнс. 50. а полный расход через сечение — (). Граничные условия, выражающие прилипание частиц жилкости к стенкам н заданную величину расхода,'можно представить в виде: при ". = — 1 ф=о, при»=» — з Р-' Ын З ЛЗ Лг» в, () = 2г. ~ од йз з1п 8 49 = 2». [ф(те) — ф (!)), » (9.7) Производная от функции тока ф (9.6) по переменному» благодаря наличию слагаемого с !п(1 — ») будет при» = 1 обращагься в бесконечность. Поэтому для обеспечения регулярности радиальной скорости внутри конуса необходимо положить: Р = О.

движвник вязкой жидкости в коннчвском диеекзоги 189 Таким образом, при малых углах раствора конического диффузора радиальная скорость и перепад давления будут представляться при- ближенно в виде Рз Зе4 Й=- к 4 (' — '"') (9.10) Полагая, наконец, получим: гсб,=а, )с0=г, 2ьг каа (9.11) з) Славкин Н.

Характеристики

Тип файла
DJVU-файл
Размер
4,74 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее