Диссертация (1154858), страница 18
Текст из файла (страница 18)
– 1014. – Vol. 25,№ 16. DOI: 10.1088/0957-4484/25/16/165102.55. A novel nano-composite multi-layered biomaterial for the treatment ofosteochondral lesions: Technique note and an early stability pilot clinical trial / E. Kon[et al.] // Injury. – 2010. – Vol. 41, № 7. – Р. 693–701.11356. A pilot study of the use of an osteochondral scaffold plug for cartilage repairin the knee and how to deal with early clinical failures / A.А. Dhollander [et al.] //Arthroscopy: The Journal of Arthroscopic & Related Surgery. – 2012. – Vol. 28, № 2. –Р. 225–233.57.
A prospective randomized clinical study of mosaic osteochondral autologoustransplantation versus microfracture for the treatment of osteochondral defects in theknee joint in young athletes / R. Gudas [et al.] // Arthrosc. J. Arthrosc. Relat. Surg. –2005. – Vol. 21, № 9. – Р. 1066–1075.58. Additive manufacturing of tissues and organs / F.P.W. Melchels [et al.] //Progress in Polymer Science. – 2012. – Vol.
37, № 8. – Р. 1079–1104.59. Adsorbed fibrinogen leads to improved bone regeneration and correlateswith differences in the systemic immune response / S.G. Santos [et al.] // ActaBiomater. – 2013. – Vol. 9, № 7. – P. 7209–7217.60. Algul D. In vitro release and in vivo biocompatibility studies of biomimeticmultilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue // J. Biomater.Sci., Polymer ed.
2016. – № 5. – P. 431–440.61. Amini A R., Wallace J.S., Nukavarapu S. P. Short-Term and Long-TermEffects of Orthopedic Biodegradable Implants // Journal of Long-Term Effects ofMedical Implants. - 2011. – Vol. 21, № 2. – P. 93–122.62. Anderson J.M. Future challenges in the in vitro and in vivo evaluation ofbiomaterial biocompatibility [Electronic resource] // Regenerative Biomaterials. – 2016.– Vol. 3, № 2. – P. 73–77.
DOI: 10.1093/rb/rbw001.63. Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction tobiomaterials // Seminars in Immunology. – 2008. – Vol. 20, № 2. – P. 86–100.64. Angiogenic and inflammatory response to biodegradable scaffolds in dorsalskinfold chambers of mice / M. Rücker [et al.] // Biomaterials.
– 2006. – Vol. 27, № 29.– Р. 5027–5038.65. Assessment of polymer/bioactive glass-composite microporous spheres fortissue regeneration applications / H. Keshaw [et al.] // Tissue Eng Part A. – 2009. – Vol.15, № 7. – Р. 1451–61.11466. Autologus bone marrow-derived mesenchymal stem cells versus autologuschondrocyte implantation: an observation cohort study / H. Nejadnik [et al.] // Am.
J.Sports Med. – 2010. – Vol. 38. – Р. 1110–1116.67. Badra S., Williams J.K. Strategies for Regenerative Medicine // J Journal ofBioengineering & Biomedical Science. – 2012. DOI:10.4172/2155-9538.S2-008.68. Bailey A.M., Mendicino M., Au P. An FDA perspective on preclinicaldevelopment of cell-based regenerative medicine products // Nature Biotechnology. –2014. – Vol. 32, № 8.
– P. 721–723.69. Bi-layer collagen/microporous electrospun nanofiber scaffold improves theosteochondral regeneration / Z Shufang [et al.] // Acta Biomaterialia. – 2013. – Vol. 9,№ 7. – Р.7236–7247.70. Biocompatibility of polycaprolactone and hydroxyapatite matrices in vivo /A.N Ivanov [et al.] // Cell and Tissue Biology. – 2015.
– Т. 9, № 5. – Р. 422–429.71. Biodegradable and bioactive porous polymer/inorganic composite scaffoldsfor bone tissue engineering / K. Rezwan [et al.] // Biomaterials. – 2006. – Vol. 27,№ 18. – Р. 3413–3431.72. Biodegradable andbiocompatible polymersfortissueengineeringapplication: a review [Electronic resource] / F.
Asghari [et al.] // Artificial Cells,Nanomedicine, and Biotechnology. – 2016. DOI: 10.3109/21691401.2016.1146731.73. Biomedical applications of biodegradable polymers / B.D. Ulery [et al.] //Journal of Polymer Science Part B: Polymer Physics. – 2011. – Vol. 49, № 12. –P. 832–864.74. Biomimetic composite coating on rapid prototyped scaffolds for bone tissueengineering / M.T.
Arafat [et al.] // Acta Biomaterialia. – 2011. – Vol. 7, № 2. – Р. 809–820.75. Biphasic scaffolds for repair of deep osteochondral defects in a sheep model/ I. Schleicher [et al.] // Journal of Surgical Research. 2013 – Vol. 183, № 1. – Р. 184–192.11576. Bone grafts and bone graft substitutes in orthopaedic trauma surgery.A critical analysis / W.G.
Jr. De Long [et al.] // The Journal of bone and joint surgery.American volume. – 2007. – Vol. 89-A, № 3. – Р. 649–658.77. Bone tissue engineering in a critical size defect compared to ectopicimplantations in the goat / M.C. Kruyt [et al.] // Journal of Orthopaedic Research. –2004. – Vol. 22, № 3. – Р. 544–551.78.
Bregy A. Solder doped polycaprolactone scaffold enables reproducible lasertissue soldering // Lasers Surg. Med. – 2008. – Vol. 40, № 10. – P. 716–725.79. Buckler L.Opportunities in regenerative medicine //BioProcessInternational. – 2011. – Vol. 9, № 3. – P. 14–18.80. Calcium phosphate coated electrospun fiber matrices as scaffolds for bonetissue engineering / A. Nandakumar [et al.] // Langmuir.
– 2010. – Vol. 26, № 10. –Р. 7380–7387.81. Callus mineralization and maturation are delayed during fracture healing ininterleukin-6 knockout mice / X. Yang [et al.] // Bone. – 2007. – Vol. 41, № 6. –P. 928–936.82. Cartilage tissue engineering identifies abnormal human induced pluripotentstem cells [Electronic resource] / A. Yamashita [et al.] // 3 Scientific Reports. – 20135;URL: http://www.nature.com/srep/2013/130613/srep01978/full/srep01978.html.83.
Chehade M., Bachorski A. Development of the Australian CoreCompetencies in Musculoskeletal Basic and Clinical Science project – phase 1 //Medical Journal of Australia. – 2008. – Vol. 189, № 3. – Р. 162–165.84. Clarke B. Normal Bone Anatomy and Physiology // Clinical journal of theAmerican Society of Nephrology. – 2008. – P. 131–139. DOI: 10.2215/CJN.04151206.85. Comparison of cellular proliferation on dense and porous PCL scaffolds /H. Şaşmazel [et al.] // Biomed. Mater. Eng. – 2008. – Vol. 18, № 3.
– Р. 119–128.86. Comparison of nanoscale and microscale bioactive glass on the properties ofP(3HB) / Bioglass composites / S.K. Misra [et al.] // Biomaterials. – 2008. – Vol. 29,№ 12. – Р. 1750–1761.11687. Computer-aided design/computer-aided manufacturing of hydroxyapatitescaffolds for bone reconstruction in jawbone atrophy: a systematic review and casereport [Electronic resource] / U. Garagiola [et al.] // Maxillofac. Plast.
Reconstr. Sur. –2016. – № 38 (1). – P. 2. DOI: 10.1186/s40902-015-0048-7.88. Cranioplasty after trephination using a novel biodegradable burr hole cover:Technical case report [Electronic resource] / J.T. Schantz [et al.] // Neurosurgery. –2006. – Vol. 58. DOI: 10.1227/01.NEU.0000193533.54580.3F.89. Cunniffe G. O., Brien F. Collagen scaffolds for orthopedic regenerativemedicine // JOM: the journal of the Minerals, Metals & Materials Society (JOM-US). –2011.
– Vol. 63, № 64. – Р. 66–73.90. Deposition of bone-like apatite on silk fiber in a solution that mimicsextracellular fluid / A. Takeuchi [et al.] // Journal of Biomedical Materials Research:Part A. – 2003. – Vol. 65, № 2. – Р. 283–289.91. Development and Characterization of Novel Biomimetic CompositeScaffolds Based on Bioglass-Collagen-Hyaluronic Acid-Phosphatidylserine for TissueEngineering Applications / Y. Wang [et al.] // Macromolecular Materials andEngineering. – 2006. – Vol. 291, № 3.
– Р. 254–262.92. Different hyaluronic acid morphology modulates primary articularchondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds / M.Lebourg [et al.] // J. Biomed. Mater. Res.: Pt. A. – 2013. – Vol. 101, № 2. – P. 518–527.93. Effect of culture conditions and calcium phosphate coating on ectopic boneformation / C.
Vaquette [et al.] // Biomaterials. – 2013. – Vol. 34, № 22. – Р. 5538–5551.94. Effect of nanoparticulate bioactive glass particles on bioactivity andcytocompatibility of poly (3-hydroxybutyrate) composites / S.K. Misra [et al.] // Journalof the Royal Society Interface. – 2010. – Vol. 7, № 44. – Р. 453–465.95. El-Kady A.M., Ali A.F., Farag M.M. Development, characterization, and invitro bioactivity studies of sol–gel bioactive glass/poly (l-lactide) nanocompositescaffolds // Materials Science and Engineering: C. – 2010. – Vol.
30, № 1. – Р. 120–131.11796. Engineering Immunomodulatory Biomaterials To Tune the InflammatoryResponse / A. Vishwakarma [et al.] // Trends in Biotechnology. – 2016. – Vol. 34, № 6.– P. 470–482.97. EP1−/− Mice Have Enhanced Osteoblast Differentiation and AcceleratedFracture Repair / M. Zhang [et al.] // J Bone Miner Res. – 2011. – Vol.
26, № 4. –P. 792–802.98. Evaluation of articular cartilage repair using biodegradable nanofibrousscaffolds in a swine model: a pilot study / W.J. Li [et al.] // J. Tissue Eng. Regen. Med.– 2009. – Vol. 3. – Р. 1–10.99. Evaluation of polycaprolactone scaffold degradation for 6 months in vitroand in vivo / C.X. Lam [et al.] // Journal of Biomedical Materials Research Part A. –2009.
– Vol. 90 –A, № 3. – Р. 906–919.100. Evolution of autologous chondrocyte repair and comparison to othercartilage repair techniques [Electronic resource] / A.K. Dewan [et al.] // BioMedResearch International. – 2014. DOI: 10.1155/2014/272481.101. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand(osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing /T. Kon [et al.] // Journal of Bone & Mineral Research. – 2001.
– Vol. 16, № 6. –P. 1004–1014.102. Fabrication and characterization of biodegradable poly(3-hydroxybutyrate)Composite Containing Bioglass / S.K. Misra [et al.] // Biomacromolecules. – 2007. –Vol. 8, № 7. – Р. 2112–2119.103. Fabrication and characterization of three dimensional electrospun corticalbone scaffolds / T. Andric // Nanomaterials and the Environment. – 2014 – Vol.