Диссертация (1154858), страница 19
Текст из файла (страница 19)
2, № 1.– P. 13–21.104. Fabricationofporousultra-shortsingle-walledcarbonnanotubenanocomposite scaffolds for bone tissue engineering / X. Shi [et al.] // Biomaterials. –2007. – Vol. 28, № 28. – Р. 4078–4090.118105. Falanga V., Sabolinski M. A bilayered living skin construct (APLIGRAF)accelerates complete closure of hard-to-heal venous ulcers // Wound Repair andRegeneration. – 1999.
– Vol. 7, № 4. – P. 201–207.106. Fisher M. B., Mauck R.L. Tissue engineering and regenerative medicine:Recent innovations and the transition to translation // Tissue engineering. Part B,Reviews. – 2013. – Vol. 19, № 1. – P. 1–13.107. Fitzpatrick L E., McDevitt T. C. Cell-derived matrices for tissue engineeringand regenerative medicine applications [Electronic resource] // Biomater Science. –2015. – Vol.
3(1). – Р. 12–24. DOI: 10.1039/C4BM00246F.108. Fracture healing as a post-natal developmental process: molecular, spatial,and temporal aspects of its regulation / L.C. Gerstenfeld [et al.] // Journal of CellularBiochemistry. – 2003. – Vol. 88, № 5. – P. 873–884.109.
Functional bone engineering using ex vivo gene therapy and topologyoptimized, biodegradable polymer composite scaffolds / C.Y. Lin [et al.] // Tissue Eng.– 2005. – Vol. 11, № 9-10. – Р. 1589–1598.110. Geesink R.G., Hoefnagels N.H. Six-year results of hydroxyapatite-coatedtotal hip replacement // Journal Bone Joint Surg. Br. – 1995. – Vol. 77, № 4. – Р. 534–547.111. Gorustovich A.A., Roether J.A.,. Boccaccini A.R. Effect of bioactive glasseson angiogenesis: a review of in vitro and in vivo evidences // Tissue Engineering: PartB: Reviews. – 2010.
– Vol. 16, № 2. – Р. 199–207.112. Hench L.L. Bioceramics: From Concept to Clinic // Journal of the AmericanCeramic Society. – 1991. – Vol. 74, № 7. – Р. 1487–1510.113. Hench L.L. The story of Bioglass // Journal of Materials Science: Materialsin Medicine. – 2006. – Vol. 17, № 11. – Р. 967–978.114. Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissueengineering / P. Fabbri [et al.] // Composites Science and Technology. – 2010.
–Vol. 70, № 13. – Р. 1869–1878.119115. HollandT.A.,MikosA.G.Biodegradablepolymericscaffolds.Improvements in bone tissue engineering through controlled drug delivery // Advancesin Biochemical Engineering / Biotechnology. – 2006. – Vol. 102. – P. 161–185.116. How to treat osteochondritis dissecans of the knee: surgical techniques andnew trends: AAOS exhibit selection / E. Kon [et al.] // J. Bone Jt.
Surg. – 2012. –Vol.94-A, № 1. – Р. 1–8.117. Human platelet rich plasma plus Persian Gulf coral effects on experimentalbone healing in rabbit model: radiological, histological, macroscopical andbiomechanical evaluation / A.M. Parizi [et al.] // Journal of Materials Science: Materialsin Medicine. – 2012. – Vol.
23, № 2. – P. 473–483.118. Hutmacher D.W. Scaffolds in tissue engineering bone and cartilage //Biomaterials. – 2000. – Vol. 21, № 24. – Р. 2529–2543.119. In vitro and in vivo analysis of macroporous biodegradable poly (D,Llactide-co-glycolide) scaffolds containing bioactive glass / R.M. Day [et al.] // Journalof Biomedical Materials Research Part A. – 2005. – Vol. 75 – A, № 4. – Р. 778–787.120. In vitro and in vivo behavior of self-reinforced bioabsorbable polymer andself-reinforced bioabsorbable polymer/bioactive glass composites / H. Niiranen [et al.]// Journal of Biomedical Materials Research Part A. – 2004. – Vol.
69-A, № 4. –Р. 699–708.121. In vitro and in vivo degradation behavior of n-HA/PCL-Pluronic-PCLpolyurethane composites / S.-Z. Fu [et al.] // Journal of Biomedical Materials ResearchPart A. – 2013. – Vol. 102, № 2. – Р. 479–486.122. In vitro biocompatibility assessment of poly(epsilon-caprolactone) filmsusing L929 mouse fibroblasts / M.C. Serrano [et al.] // Biomaterials. – 2004. – Vol. 25,№ 25. – P. 5603–5611.123.
In vitro bone engineering based on polycaprolactone and polycaprolactonetricalcium phosphate composites / Y. Zhou [et al.] // Polymer International. – 2007. –Vol. 56, № 3. – Р. 333–342.124. In vitro/in vivo biocompatibility and mechanical properties of bioactive glassnanofiber and poly (ε-caprolactone) composite materials / J.-H. Jo [et al.] // Journal of120Biomedical Materials Research Part B: Applied Biomaterials. – 2009.
– Vol. 91-B, № 1.– Р. 213–220.125. In vivo behavior of poly (1, 3-trimethylene carbonate) and copolymers of1,3- trimethylene carbonate with D,L- lactide orcaprolactone: Degradation and tissueresponse / A.P. Pêgo [et al.] // Journal of Biomedical Materials Research Part A. – 2003.– Vol. – 67-А, № 3. – Р. 1044–1054.126. In vivo behavior of trimethylene carbonate and ε-caprolactone-based(co)polymer networks: Degradation and tissue response / E.
Bat [et al.] // Journal ofBiomedical Materials Research Part A. – 2010. – Vol. – 95-A, № 3. – Р. 940–949.127. In vivo biocompatibility and biodegradation of 3D-printed porous scaffoldsbased on a hydroxyl-functionalized poly(ε-caprolactone) / H. Seyednejad [et al.] //Biomaterials. – 2012. – Vol. 33, № .17.
– P. 4309–4318.128. In vivo biocompatibility and vascularization of biodegradable porouspolyurethane scaffolds for tissue engineering / M.W. Laschke [et al.] // Acta Biomater.– 2009. – Vol. 5, № 6. – P. 1991–2001.129. Inflammation in tissue engineering: The Janus between engraftment andrejection / A. Crupi [et al.] // European Journal of Immunology. – 2015. – Vol.
45,№ 12. – P. 3222–3236.130. Integration of engineered cartilage / B. Obradovic [et al.] // J. Orthop. Res. –2001. – Vol. 19. – Р. 1089–1097.131. Kamath M.S. Polycaprolactone scaffold engineered for sustained release ofresveratrol: therapeutic enhancement in bone tissue engineering // Int. J. Nanomed. –2014. – Vol. 9. – P. 183–195.132. Ketorolac administration does not delay early fracture healing in a juvenilerat model: A pilot study / T.
Cappello·[et al.] // Journal of pediatric orthopedics. – 2013.– Vol. 33, № 4. – P. 415–421.133. KimS.Y.,HwangJ.Y.,ShinU.S.Preparationofnano/macroporouspolycaprolactone microspheres for an injectable cell delivery systemusing room temperature ionic liquid and camphene // J. Colloid Interface Sci. – 2016.
–№ 465. – P. 18–25.121134. Le Geros R.Z. Properties of osteoconductive biomaterials: calciumphosphates // Clinical Orthopaedics and Related Research. – 2002. – Vol. 395. – Р. 81–98. PMID:11937868.135. Lee S.K., Lorenzo J. Cytokines regulating osteoclast formation and function// Current Opinion in Rheumatology. – 2006. – Vol. 18, № 4. – P. 411–418.136. Liu H., Webster T.J.
Mechanical properties of dispersed ceramicnanoparticlesinpolymercompositesfororthopedicapplications//IntJNanobiomedicine. – 2010 – № 5. – P. 299–313.137. Maitz M.F. Applications of synthetic polymers in clinical medicine //Biosurface and Biotribology. – 2015. – Vol. 1, № 3. – P. 161–176.138. Man as living bioreactor: Fate of an exogenously prepared customizedtissue-engineered mandible / P.H Warnke [et al.] // Biomaterials. – 2006. – Vol. 27,№ 17. – Р.
3163–3167.139. Mao A. S., Mooney D. J. Regenerative medicine: Current therapies andfuture directions // Proceedings of the National Academy of Sciences of the UnitedStates of America. – 2015. – Vol. 112, № 47. – P. 14452–14459.140. Marsell R., Einhorn T. A. The biology of fracture healing // Injury. – 2011. –Vol. 42, № 6. – P. 551–555.141. Matrix scaffolding for stem cell guidance toward skeletal muscle tissueengineering [Electronic resource] / C. Fuoco [et al.] // Journal of Orthopaedic Surgeryand Research. – 2016. DOI: 10.1186/s13018-016-0421-y.142. Melt-electrospun polycaprolactone strontium-substituted bioactive glassscaffolds for bone regeneration / J.
Ren [et al.] // Journal of Biomedical MaterialsResearch Part A. – 2013. – Vol. 102, № 9. – Р. 3140–3153.143. Mendelson A., Frenette P.S. Hematopoietic stem cell niche maintenanceduring homeostasis and regeneration // Nature Medicine. – 2014. – Vol. 20, № 8. –P.
833–846.144. Mesh biocompatibility: effects of cellular inflammation and tissueremodelling [Electronic resource] // K. Junge [et al.] // Langenbeck's Archives ofSurgery. – 2012. – Vol. 397, № 2. – P. 255–70. DOI: 10.1007/s00423-011-0780-0.122145. Mimicking nature by codelivery of stimulant and inhibitor to createtemporally stable and spatially restricted angiogenic zones / W.W. Yuen [et al.] //Proceedings of the National Academy of Sciences of the United States of America –2010.
– Vol. 107, № 42. – P. 17933–17938.146. Morphology and degradation properties of PCL/HYAFF11® compositescaffolds with multi-scale degradation rate / V. Guarino [et al.] // Composites Scienceand Technology. – 2010. – Vol. 70, № 13. – Р. 1826–1837.147. Mosaic osteochondral transplantations in the knee joint, midterm results ofthe SFA multicenter study / D. Ollat [et al.] // Orthop. Traumatol. Surg.
Res. – 2011. –Vol. 97, № 8. – Р. 160–166.148. Moshiri A., Oryan A. Role of platelet rich plasma in soft and hardconnective tissue healing: an evidence based review from basic to clinical application[Electronic resource] // Hard Tissue. – 2013. – Vol.