Диссертация (1154858), страница 20
Текст из файла (страница 20)
2(1), № 6. DOI: 10.13172/20502303-2-1-326.149. Murphy W.L., Kohn D.H., Mooney D.J. Growth of continuous bonelikemineral within porous poly (lactide-co-glycolide) scaffolds in vitro // Journal ofBiomedical Materials Research. – 2000. – Vol. 50, № 1. – Р. 50–58.150.
Muschler G.F., Nakamoto C., Griffith L.G. Engineering principles of clinicalcell-based tissue engineering // The Journal of Bone & Joint Surgery. – 2004. – Vol. 86,№ 7. – Р. 1541–1558.151. Nanohydroxyapatite-coated electrospun poly (L-lactide) Nanofibers enhanceosteogenic differentiation of stem cells and induce ectopic bone formation /E. Seyedjafari et al [et al.] // Biomacromolecules. – 2010. – Vol.
11, № 11. Р. 3118–3125.152. Non-invasive in vitro and in vivo monitoring of degradation of fluorescentlylabeled hyaluronan hydrogels for tissue engineering applications / Y. Zhang [et al.] //Acta Biomater. – 2016. – № 30. – P. 188–198.153. Novel nano-composite multi-layered biomaterial for the treatment ofmultifocal degenerative cartilage lesions / E.
Кon [et al.] // Knee Surgery, SportsTraumatology, Arthroscopy. – 2009. – Vol. 17. – Р. 1312–1315.123154. Oryan A, Moshiri A. Recombinant fibroblast growth protein enhanceshealing ability of experimentally induced tendon injury in vivo // Journal of TissueEngineering and Regenerative Medicine. – 2012. – Vol. 8, № 6. – P. 421–431.155.
Oryan A., Alidadi S., Moshiri A. Current concerns regarding healing of bonedefects [Electronic resource] // Hard Tissue. – 2013. – Vol. 26, № 2 (2). DOI:10.13172/2050-2303-2-2-374.156. Oryan A., Moshiri A. A long term study on the role of exogenous humanrecombinant basic fibroblast growth factor on the superficial digital flexor tendonhealing in rabbits // Journal of Musculoskeletal Neuronal Interact. – 2011. – Vol.
11,№ 2. – P. 185–195.157. Osteogenesis in extraskeletally implanted porous calcium phosphateceramics: variability among different kinds of animals / Z. Yang [et al.] // Biomaterials.– 1996. – Vol. 17, № 22. – Р. 2131–2137.158. Osteoinduction of Human Mesenchymal Stem Cells by Bioactive CompositeScaffolds without Supplemental Osteogenic Growth Factors [Electronic resource] /A. Polini [et al.] // PLoS ONE. – 2011.
– Vol. 6, № 10. – Р. 26211. DOI:org/10.1371/journal.pone.0026211.159. Parikh S. Bone Graft Substitutes: past, present, future // Journal ofPostgraduate Medicine. – 2002. – Vol. 48, № 2. – Р. 142–148.160. Patik J.C. Impaired endothelium independent vasodilation in the cutaneousmicrovasculature of young obese adults // Microvasc. Res. – 2016. – № 104. – P. 63–68.161. Poly-epsilon-caprolactone/gelhybridscaffoldsforcartilagetissueengineering / J.C. Schagemann [et al.] // J. Biomed. Mater. Res.: Pt.
A. – 2010. –Vol. 93, № 2. – Р. 454–463.162. Poh P.S.P. In vitro and in vivo assessment of bioactive composite scaffoldsfabricated via additive manufacturing technology: dis. … Doctor of Philosophy: /Queensland. – 2014. – 205 p.163. Predictive value of in vitro and in vivo assays in bone and cartilage repair –what do they really tell us about the clinical performance / P.
Habibovic [et al.] // TissueEngineering US. – 2007. – Vol. 585. – Р. 327–360.124164. Preparation and mechanical behavior of PLGA/nano-BCP compositescaffolds during in-vitro degradation for bone tissue engineering / M. EbrahimianHosseinabadi [et al.] // Polymer Degradation and Stability. – 2011. – Vol. 96, № 10. –Р. 1940–1946.165. Progress in the tissue engineering and stem cell industry “are we there yet?[Electronic resource] / A. Jaklenec [et al.] // Tissue Engineering Part B: Reviews.
–2012. – Vol. 18, № 3. – P. 155–166. DOI: 10.1089/ten.TEB.2011.0553.166. Rees L., Kim J. J. HLA sensitisation: can it be prevented? // PediatrNephrol. – 2015. – Vol. 30, № 4. – P. 577–587.167. Robocasting nanocomposite scaffolds of poly (caprolactone) hydroxyapatiteincorporating modified carbon nanotubes for hard tissue reconstruction / B. Dorj [et al.]// J.
Biomed. Mater. Res.: Pt. A. – 2013. – Vol. 101, № 6. – P. 1670–1681.168. Salivary gland regeneration: therapeutic approaches from stem cells to tissueorganoids [Electronic resource] / I Lombaert [et al.] // Stem Cells. – 2016.DOI: 10.1002/stem.2455.169. Scaffold-based repair for cartilage healing: a systematic review and technicalnote / F.
Giuseppe [et al.] // Arthroscopy: The Journal of Arthroscopic & RelatedSurgery. – 2013. – Vol. 29, № 1. – Р. 174–186.170. Schuckert K.H., Jopp S., Teoh S.H Mandibular defect reconstruction usingthree-dimensional polycaprolactone scaffold in combination with platelet-rich plasmaand recombinant human bone morphogenetic protein-2: de novo synthesis of bone in asingle case // Tissue Engineering Part A.
– 2008. – Vol. 15, № 3. – Р. 493–499.171. Stevens M.M. Biomaterials for bone tissue engineering // Materials Today. –2008. – Vol. 11, № 5. – Р. 18–25.172. Strategies for bioengineered scaffolds that support adipose stem cells inregenerative therapies / T. N. Clevenger [et al.] // Regenerative Medicine. – 2016. –Vol. 11, № 6. – P. 589–599.173. Suresh K.V. Clinical use of different biomaterials for cutaneous woundhealing in veterinary practice [Electronic resource] // World Congress onBiotechnology. – 2011. DOI: 10.4172/2155-9538.10000S1.125174.
Synthesis, characterization and osteoblastic activity of polycaprolactonenanofibers coated with biomimetic calcium phosphate / B. Mavis [et al.] // ActaBiomaterialia. – 2009. – Vol. 5, № 8. – Р. 3098-3111.175. Ten-year follow-up of a prospective, randomized clinical study of mosaicosteochondral autologous transplantation versus microfracture for the treatment ofosteochondral defects in the knee joint of athletes / R. Gudas [et al.] // Am.
J. SportsMed. – 2012. – Vol. 40, № 11. – Р. 2499–2508.176. The effect of a hydroxyapatite and 4-hexylresorcinol combination graft onbone regeneration in the rabbit calvarial defect model / M. K. Kim [et al.] // J KoreanAssoc Maxillofac Plast Reconstr Surg. – 2012. – Vol. 41, № 6. – Р. 377–383.177. The effect of bioactive glass content on synthesis and bioactivity ofcomposite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering /J.
Yao [et al.] // Biomaterials. – 2005. – Vol. 26, № 14. – Р. 1935–1943.178. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds onrestoring osteochondral defects in rabbits / D. Pingguo [et al.] // Journal of BiomedicalMaterials Research. – 2014. – Vol. 102, № 1.
– Р. 180–192.179. The pore size of polycaprolactone scaffolds has limited influence on boneregeneration in an in vivo model / S.M.M. Roosa // Journal of Biomedical MaterialsResearch Part A. – 2010. – Vol. 92-A, № 1. – Р. 359–368.180. The pro-angiogenic properties of multi-functional bioactive glass compositescaffolds / L.-C. Gerhardt [et al.] // Biomaterials.
– 2011. – Vol. 32, № 17. – Р. 4096–4108.181. The role of macrophage phenotype in vascularization of tissue engineeringscaffolds / K.L. Spiller [et al.] // Biomaterials. – 2014. – Vol. 35, № 15. – P. 4477–4488.182. The scaffold immune microenvironment: biomaterial-mediated immunepolarization in traumatic and non-traumatic applications / K. Sadtler [et al.] // TissueEng Part A. – 2016. – Vol.
34, № 6. – P. 470–482.183. Time–frequency analysis of laser Doppler flowmetry signals recorded inresponse to a progressive pressure applied locally on anaesthetized healthy rats /A. Humeau [et al.] // Phys. Med. Biol. – 2004. – Vol. 49, № 5. – P. 843–857.126184. Tissue engineered trachea using decellularized aorta [Electronic resource] /A.C. Paz [et al.] // Journal of Bioengineering & Biomedical Science.
– 2011. SCIS2:001. DOI:10.4172/2155-9538.S2-001.185. Tissue engineering for skeletal muscle regeneration [Electronic resource] /R. Rizzi [et al.] // Muscle, Ligaments and Tendons Journal. – 2012. – Vol. 2(3). –Р. 230–234. PMCID: PMC3666528.186. Treatment of knee osteochondritis dissecans with a cell-free biomimeticosteochondral scaffold: clinical and imaging evaluation at 2-year follow-up / G. Filardo[et al.] // Am J Sports Med.
– 2013. – Vol. 41, № 8. – Р. 1786–1793.187. TruskeyA.G.Advancingcardiovasculartissueengineering//F1000Research. – 2016. № 5. DOI: 10.12688/f1000research.8237.1.188. Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclastformation in vitro / R. Balga [et al.] // Bone. – 2006. – Vol. 39, № 2. – P. 325–335.189. Tuning polycaprolactone–carbon nanotube composites for bone tissueengineering scaffolds / M. Mattioli-Belmonte [et al.] // Materials Science andEngineering: C. – 2012. – Vol. 32, № 2. – Р.