Диссертация (1150840), страница 14
Текст из файла (страница 14)
Phys. 2001.Vol. 64. P. 885–942. arXiv:gr-qc/0108040.2. Горбунов Д. С., Рубаков В. А. Введение в теорию ранней Вселенной.М.: Красанд, 2009.3. Janet M. Sur la possibilité du plonger un espace riemannien donné dansun espace euclidien // Ann. Soc. Polon.
Math. 1926. Vol. 5. P. 38–43.4. Kartan E. Sur la possibilité du plonger un espace riemannien donné dansun espace euclidien // Ann. Soc. Polon. Math. 1927. Vol. 6. P. 1–7.5. Friedman A. Local isometric embedding of Riemannian manifolds withindefinite metric // J. Math. Mech. 1961.
Vol. 10. P. 625.6. Clarke C. J. S. On the Global Isometric Embedding of Pseudo-RiemannianManifolds // Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1970. Vol. 314, no 1518. P. pp. 417–428.URL: http://www.jstor.org/stable/2416482.7. Arnowitt R., Deser S., Misner C. The Dynamics of General Relativity //Gravitation: an introduction to current research / Ed. by L.
Witten. NewYork: Wiley, 1962. P. 227–265. arXiv:gr-qc/0405109.8. Wheeler John A. Geometrodynamics and the Problem of Motion // Rev.Mod. Phys. 1961. — Jan. Vol. 33. P. 63–78.9. Regge T., Teitelboim C. Role of surface integrals in the Hamiltonian formulation of general relativity // Annals of Physics. 1974. Vol. 88, no. 1.P. 286 – 318.10210.
Hanson Andrew J., Regge Tullio, Teitelboim Claudio. Constrained Hamiltonian Systems. 1976. URL: http://hdl.handle.net/2022/3108.11. Regge T., Teitelboim C. General relativity à la string: a progress report //Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 1975 /Ed.
by R. Ruffini. North Holland, Amsterdam: 1977. P. 77–88.12. Davidson A., Karasik D., Lederer Y. Cold Dark Matter from Dark Energy.arXiv:gr-qc/0111107.13. Davidson A. Λ = 0 Cosmology of a Brane-like universe // Class. Quant.Grav. 1999. Vol. 16.
P. 653. arXiv:gr-qc/9710005.14. Davidson Aharon, Karasik David, Lederer Yoav. Geodesic evolution andnucleation of a de Sitter brane // Phys. Rev. D. 2005. — Sep. Vol. 72.P. 064011. arXiv:gr-qc/0509127.15. Cordero R., Molgado A., Rojas E. Ostrogradski approach for the ReggeTeitelboim type cosmology // Phys. Rev. D. 2009.
Vol. 79. P. 024024.arXiv:0901.1938.16. Cordero R., Cruz M., Molgado A., Rojas E. Quantum modified ReggeTeitelboim cosmology // Gen.Rel.Grav. 2014. Vol. 46. P. 1761. arXiv:grqc/1309.3031.17. Tapia V. Gravitation a la string // Class. Quant. Grav. 1989. Vol. 6. P. L49.18. Estabrook F. Specialized Orthonormal Frames and Embedding // SIGMA.2013. Vol. 9. P. 012. arXiv:1206:5229.19. Paston S. A., Sheykin A. A. Embeddings for Schwarzschild metric: classification and new results // Class. Quant.
Grav. 2012. Vol. 29. P. 095022.arXiv:1202.1204.20. Paston S. A., Sheykin A. A. From the Embedding Theory to GeneralRelativity in a result of inflation // Int. J. Mod. Phys. D. 2012. Vol. 21,no. 5. P. 1250043. arXiv:1106.5212.10321. Paston S. A., Sheykin A.
A. Global embedding of the Reissner-Nordstrommetric in the flat ambient space // SIGMA. 2014. Vol. 10. P. 003.arXiv:1304:6550.22. Sheykin A. A., Grad D. A., Paston S. A. Embeddings of the black holes ina flat space // Proceedings of QFTHEP 2013, Saint Petersburg Area, Russia. Proceedings of Science, PoS(QFTHEP2013)091. arXiv:1401.7820.23. Sheykin A. A., Paston S. A. The approach to gravity as a theory of embedded surface // AIP Conference Proceedings.
2014. Vol. 1606. P. 400.arXiv:1402.1121.24. Kasner E. Finite Representation of the Solar Gravitational Field in FlatSpace of Six Dimensions // Am. J. Math. 1921. Vol. 43, no. 2. P. 130–133. URL: http://www.jstor.org/stable/2370246.25. Kasner E. The Impossibility of Einstein Fields Immersed in Flat Space ofFive Dimensions // Am.
J. Math. 1921. Vol. 43, no. 2. P. 126–129. URL:http://www.jstor.org/stable/2370245.26. Fronsdal C. Completion and Embedding of the Schwarzschild Solution //Phys. Rev. 1959. Vol. 116, no. 3. P. 778–781.27. Крамер Д., Штефани Х., Мак-Каллум М., Херльт Э. Точные решенияуравнений Эйнштейна / Под ред. .
Шмутцер. М.: Энергоиздат, 1982.28. Rosen J. Embedding of Various Relativistic Riemannian Spaces in PseudoEuclidean Spaces // Rev. Mod. Phys. 1965. Vol. 37, no. 1. P. 204–214.29. Collinson C. D. Embeddings of the Plane-Fronted Waves and Other SpaceTimes // J. Math. Phys. 1968. Vol. 9. P. 403.30. Goenner H. Local Isometric Embedding of Riemannian Manifolds andEinstein’s Theory of Gravitation // General Relativity and Gravitation:One Hundred Years after the birth of Albert Einstein / Ed. by A. Held.New York: Plenum Press, 1980. Vol.
1. P. 441–468.31. Pavsic M., Tapia V. Resource Letter on geometrical results for Embeddings and Branes. arXiv:gr-qc/0010045.10432. Яглом И. М. Принцип относительности Галилея и неевклидова геометрия. М.: Наука, 1969.33. Letaw J. R. Stationary world lines and the vacuum excitation of noninertialdetectors // Phys. Rev. D. 1981.
Vol. 23. P. 1709–1714.34. Fujitani T., Ikeda M., Matsumoto M. On the imbedding of theSchwarzschild space-time I // J. Math. Kyoto Univ. 1961. Vol. 1, no. 1.P. 43–61. URL: http://projecteuclid.org/euclid.kjm/1250525103.35. Plebanski J. F. An embedding of a Schwarzchild black hole in terms ofelementary functions // Acta Phys. Pol. B.
1995. Vol. 26, no. 5. P. 875–888.36. Davidson A., Paz U. Extensible Black Hole Embeddings // Found. Phys.2000. Vol. 30, no. 5. P. 785–794.37. Kottler Friedrich. Über die physikalischen Grundlagen der EinsteinschenGravitationstheorie // Annalen der Physik. 1918. Vol. 361, no. 14. P. 401–462.38. Pandey S. N., Kansal I. D. Impossibility of class one electromagneticfields // Proc. Cambridge Phil. Soc. 1969. Vol. 66. P. 153.39.
Hong S. Complete higher dimensional global embedding structures of various black holes // Gen. Rel. Grav. 2004. Vol. 36. P. 1919–1929. arXiv:grqc/0310118.40. Deser S., Levin O. Mapping Hawking into Unruh thermal properties //Phys. Rev. D. 1999. Vol. 59. P. 064004. arXiv:hep-th/9809159.41. Giblin Jr J. T, Marolf D., Garvey R. H. Spacetime Embedding Diagramsfor Spherically Symmetric Black Holes // Gen.
Rel. Grav. 2004. Vol. 36.P. 83–99. arXiv:gr-qc/0305102.42. Paranjape A., Dadhich N. Embedding Diagrams for the ReissnerNordstrom spacetime // Gen. Rel. Grav. 2004. Vol. 36. P. 1189–1195.arXiv:gr-qc/0307056.10543. Jacob A., Piran T. Embedding the Reissner-Nordstrom spacetime in Euclidean and Minkowski spaces // Class. Quant. Grav. 2006. Vol. 23.P. 4035–4045. arXiv:gr-qc/0605104.44.
Rosen J. Embedding of the Schwarzschild and Reissner-Weyl Solutions //Nuovo Cimento. 1965. Vol. 38. P. 631–633.45. Plazowski J. The imbedding method of finding the maximal extensions ofsolutions of Einstein field equations // Acta Phys. Pol. B. 1973. Vol. 4.P. 49.46. Ferraris M., Francaviglia M. Algebraic Isometric Embeddings of ChargedSpherically Symmetric Space-Times // Gen. Rel. Grav.
1980. Vol. 12.P. 791–804.47. Liang Songxin, Jeffrey David J. Automatic computation of the completeroot classification for a parametric polynomial // Journal of SymbolicComputation. 2009. Vol. 44, no. 10. P. 1487 – 1501.48. Пастон С. А. Связь между квантовыми эффектами в ОТО и в теориивложения (в печати), 2015.49. Bustamante M. D., Debbasch F., Brachet M.-E. Classical Gravitation asfree Membrane Dynamics.
arXiv:gr-qc/0509090.50. Willison S. A Re-examination of the isometric embedding approach toGeneral Relativity. arXiv:1311.6203.51. Pavsic M. Classical theory of a space-time sheet // Phys. Lett. A. 1985.Vol. 107. P. 66–70.52. Kokarev S. S. Space-time as multidimensional elastic plate // Nuovo Cim.B. 1998. Vol. 113. P. 1339–1350. arXiv:gr-qc/0010005.53. Deser S., Pirani F. A. E., Robinson D. C. New embedding model of general relativity // Phys.
Rev. D. 1976. Vol. 14, no. 12. P. 3301–3303.54. Ferraris M., Francaviglia M. Energy-momentum tensors and stress tensorsin geometric field theories // Journal of Mathematical Physics. 1985.Vol. 26, no. 6. P. 1243–1252.10655. Karasik D., Davidson A. Geodetic Brane Gravity // Phys. Rev. D.
2003.Vol. 67. P. 064012. arXiv:gr-qc/0207061.56. Capovilla R., Guven J., Rojas E. Hamiltonian dynamics of extended objects // Class.Quant.Grav. 2004. Vol. 21. P. 5563–5586. arXiv:hep-th/hepth/0404178.57. Capovilla R., Escalante A., Guven J., Rojas E. Hamiltonian dynamics ofextended objects: Regge-Teitelboim model // Int. J. Theor. Phys. 2009.Vol. 48. P. 2486.