Диссертация (1150814), страница 14
Текст из файла (страница 14)
S. Intra- and inter-supramolecularcomplexation of poly(butyl methacrylate)-co-2-(1,2,3-triazol-4-yl)pyridine copolymers induced byCoII, FeII, and EuIII ions monitored by molecular hydrodynamics methods. J. Polym. Sci., Part A:Polym. Chem. 2016, 54 (16), 2632-2639.32.Happ, B.; Pavlov, G. M.; Perevyazko, I.; Hager, M. D.; Winter, A.; Schubert, U. S.
InducedCharge Effect by Co(II) Complexation on the Conformation of a Copolymer Containing a Bidentate 2(1,2,3-Triazol-4-yl)pyridine Chelating Unit. Macromol. Chem. Phys. 2012, 213 (13), 1339-1348.33.Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials.Chem. Soc. Rev. 2012, 41 (18), 6042-6065.34.Lehn, J.-M. Supramolecular chemistry: from molecular information towards self-organizationand complex matter. Rep. Prog. Phys. 2004, 67 (3), 249.35.Kurth, D. G. Metallosupramolecular coordination polyelectrolytes - Potential building blocksfor molecular-based devices. Molecular Electronics Ii 2002, 960, 29-38.36.Whittell, G. R.; Hager, M.
D.; Schubert, U. S.; Manners, I. Functional soft materials frommetallopolymers and metallosupramolecular polymers. Nature Materials 2011, 10 (3), 176-188.37.Dobrynin, A. V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog.Polym. Sci. 2005, 30 (11), 1049-1118.38.Dobrynin, A. V. Solutions of Charged Polymers. In Polymer Science: A Comprehensive- 85 Reference, Krzysztof, M.; Martin, M., Eds.; Elsevier: Amsterdam, 2012, pp 81-132.39.Pavlov, G. M.; Okatova, O. V.; Gavrilova, I.
I.; Ul’yanova, N. N.; Panarin, E. F. Sizes andconformations of hydrophilic and hydrophobic polyelectrolytes in solutions of various ionic strengths.Polymer Science Series A 2013, 55 (12), 699-705.40.Cametti, C. Does Electrical Conductivity of Linear Polyelectrolytes in Aqueous Solutions Followthe Dynamic Scaling Laws? A Critical Review and a Summary of the Key Relations. Polymers 2014, 6(4), 1207-1231.41.Keddie, D. J. A guide to the synthesis of block copolymers using reversible-additionfragmentation chain transfer (RAFT) polymerization.
Chem. Soc. Rev. 2014, 43 (2), 496-505.42.Lokitz, B. S.; Lowe, A. B.; McCormick, C. L. Reversible Addition Fragmentation Chain TransferPolymerization of Water-Soluble, Ion-Containing Monomers. In Polyelectrolytes and Polyzwitterions;American Chemical Society, 2006; Vol. 937, pp 95-115.43.Chaduc, I.; Lansalot, M.; D’Agosto, F.; Charleux, B. RAFT Polymerization of Methacrylic Acid inWater. Macromolecules 2012, 45 (3), 1241-1247.44.Klimkevicius, V.; Makuska, R. Successive RAFT polymerization of poly(ethylene oxide) methylether methacrylates with different length of PEO chains giving diblock brush copolymers.
Eur. Polym.J. 2017, 86, 94-105.45.Kim, Y.; Binauld, S.; Stenzel, M. H. Zwitterionic Guanidine-Based Oligomers Mimicking Cell-Penetrating Peptides as a Nontoxic Alternative to Cationic Polymers to Enhance the Cellular Uptakeof Micelles. Biomacromolecules 2012, 13 (10), 3418-3426.46.Hemp, S. T.; Smith, A. E.; Bryson, J.
M.; Allen, M. H.; Long, T. E. Phosphonium-ContainingDiblock Copolymers for Enhanced Colloidal Stability and Efficient Nucleic Acid Delivery.Biomacromolecules 2012, 13 (8), 2439-2445.47.Ahmed, M.; Narain, R. Progress of RAFT based polymers in gene delivery. Prog. Polym. Sci.2013, 38 (5), 767-790.48.Van Krevelen, D.
W.; Te Nijenhuis, K. Chapter 1 - Polymer Properties. In Properties of Polymers(Fourth Edition); Elsevier: Amsterdam, 2009, pp 3-5.49.Cantor, C. R.; Schimmel, P. R. Biophysical Chemistry; W.H. Freeman & Company: San Francisco,1980.50.Tsvetkov, V. N.; Eskin, V. E.; Frenkel, S. Y. Structure of macromolecules in solution; Nat. Lend.Library Sci.&Technol.: Boston, 1971.51.Tsvetkov, V. N. Rigid chain polymers; Plenum Press: New York, 1989.52.Flory, P. J.; Fox, T. G. Treatment of Intrinsic Viscosities. J. Am.
Chem. Soc. 1951, 73 (5), 1904-- 86 1908.53.Tanford, C. Physical chemistry of macromolecules; Wiley: New York, 1961.54.Furukawa, J. Physical Chemistry of Polymer Rheology: Towards the Realization of MolecularDevices; Springer: Berlin, 2003.55.Huggins, M. L. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence onConcentration. J. Am. Chem. Soc. 1942, 64 (11), 2716-2718.56.Kraemer, E. O. Molecular Weights of Celluloses and Cellulose Derivates. Industrial &Engineering Chemistry 1938, 30 (10), 1200-1203.57.Pamies, R.; Cifre, J. G. H.; Martinez, M. D.
L.; de la Torre, J. G. Determination of intrinsicviscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures.Colloid. Polym. Sci. 2008, 286 (11), 1223-1231.58.Sakai, T. Huggins constant k′ for flexible chain polymers. Journal of Polymer Science Part A-2:Polymer Physics 1968, 6 (8), 1535-1549.59.Svedberg, T.; Pedersen, K. O. The Ultracentrifuge; Clarendon Press: Oxford, 1940.60.Scott, D.; Harding, S.; Rowe, A. Analytical Ultracentrifugation : Techniques and Methods; TheRoyal Society of Chemistry: Cambridge, 2005.61.Svedberg, T.; Fåhraeus, R. А new method for the determination of the molecular weight of theproteins.
J. Am. Chem. Soc. 1926, 48 (2), 430-438.62.Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocityultracentrifugation and lamm equation modeling. Biophys. J. 2000, 78, 1606-19.63.Stafford, W. F. Boundary Analysis in Sedimentation Transport Experiments - a Procedure forObtaining Sedimentation Coefficient Distributions Using the Time Derivative of the ConcentrationProfile. Anal. Biochem. 1992, 203 (2), 295-301.64.Cao, W. M.; Demeler, B.
Modeling analytical ultracentrifugation experiments with an adaptivespace-time finite element solution of the Lamm equation. Biophys. J. 2005, 89 (3), 1589-1602.65.Lamm, O. Die Differentialgleichung der Ultrazentrifugierung. Ark. Mat. Astr. Fys. 1929, 21B, 1–4.66.Pavlov, G. M.; Perevyazko, I.; Schubert, U. S. Velocity Sedimentation and Intrinsic ViscosityAnalysis of Polystyrene Standards with a Wide Range of Molar Masses. Macromol. Chem. Phys. 2010,211, 1298-1310.67.Pavlov, G.
M.; Perevyazko, I. Y.; Okatova, O. V.; Schubert, U. S. Conformation parameters oflinear macromolecules from velocity sedimentation and other hydrodynamic methods. Methods2011, 54, 124-135.- 87 68.Perevyazko, I.; Seiwert, J.; Schömer, M.; Frey, H.; Schubert, U. S.; Pavlov, G. M. HyperbranchedPoly(ethylene glycol) Copolymers: Absolute Values of the Molar Mass, Properties in Dilute Solution,and Hydrodynamic Homology.
Macromolecules 2015, 48 (16), 5887-5898.69.Nischang, I.; Perevyazko, I.; Majdanski, T.; Vitz, J.; Festag, G.; Schubert, U. S. HydrodynamicAnalysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties ofSynthetic Poly(ethylene glycol)s Created by Varying Initiation Sites. Anal. Chem. 2017, 89 (2), 11851193.70.Schuck, P.; Perugini, M. A.; Gonzales, N. R.; Howlett, G. J.; Schubert, D. Size-distributionanalysis of proteins by analytical ultracentrifugation: strategies and application to model systems.Biophys. J. 2002, 82 (2), 1096-111.71.Evans, R.; Deng, Z.; Rogerson, A.
K.; McLachlan, A. S.; Richards, J. J.; Nilsson, M.; Morris, G. A.Quantitative Interpretation of Diffusion-Ordered NMR Spectra: Can We Rationalize Small MoleculeDiffusion Coefficients? Angew. Chem. Int. Ed. 2013, 52 (11), 3199-3202.72.Giddings, J. C.; Yang, F. J.; Myers, M. N. Flow field-flow fractionation as a methodology forprotein separation and characterization. Anal. Biochem. 1977, 81 (2), 395-407.73.Schuck, P.; Rossmanith, P. Determination of the sedimentation coefficient distribution byleast-squares boundary modeling.
Biopolymers 2000, 54, 328-41.74.Maechtle, W. Characterization of Dispersions Using Combined H2O/D2O UltracentrifugeMeasurements. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1984, 185 (5),1025-1039.75.Maechtle, W.; Boerger, L. Analytical Ultracentrifugation of Polymers and Nanoparticles;Springer Berlin / Heidelberg2006.76.Martin, W. G.; Cook, W.
H.; Winkler, C. A. The determination of partial specific volumes bydifferential sedimentation. Can. J. Chem. 1956, 34 (6), 809-814.77.Tsvetkov, V. N.; Lavrenko, P. N.; Bushin, S. V. Hydrodynamic Invariant of Polymer-Molecules. J.Polym. Sci., Part A: Polym. Chem. 1984, 22 (11), 3447-3486.78.Pavlov, G.; Frenkel, S. Sedimentation parameter of linear polymers. Prog. Colloid Polym. Sci.1995, 99, 101-108.79.Fujita, H. Polymer Solutions; Elsevier: Amsterdam, 1990.80.Brandrup, J.; Immergut, E.
H.; Grulke, E. A. Polymer handbook, 4th edition; Wiley: New York,1999.81.Pavlov, G. M.; Frenkel, S. Y. About the concentration dependence of macromoleculesedimentation coefficients. Vysokomol. Soedin. 1982, 24, 178-180.- 88 82.Rafikov, S. R.; Budtov, V. P.; Monakov, Y. B. Introduction to physical chemistry of polymersolutions; Science: Moscow, 1978.83.Fujita, H. Some unsolved problems on dilute polymer solutions. Macromolecules 1988, 21 (1),179-185.84.Yamakawa, H. Modern theory of polymer solutions; Harper & Row: New York, 1971.85.Yamakawa, H.; Fujii, M.
Intrinsic-Viscosity of Wormlike Chains - Determination of Shift Factor.Macromolecules 1974, 7 (1), 128-135.86.Broersma, S. Translational Diffusion Constant of a Random Coil. J. Chem. Phys. 1969, 51 (1),233-238.87.Yamakawa, H.; Fujii, M. Translational Friction Coefficient of Wormlike Chains. Macromolecules1973, 6 (3), 407-415.88.Burchard, V.
W. ÜBer den einfluß der lösungsmittel auf die struktur linearer makromoleküle.Die Makromolekulare Chemie 1961, 50 (1), 20-36.89.Stockmayer, W. H.; Fixman, M. On the estimation of unperturbed dimensions from intrinsicviscosities. J. Polym. Sci., Part C: Polym. Symp. 1963, 1 (1), 137-141.90.Cowie, J. M. G.; Bywater, S. The use of frictional coefficients to evaluate unperturbeddimensions in dilute polymer solutions. Polymer 1965, 6 (4), 197-204.91.Horace B. Gray, J.; Bloomfield, V. A.; Hearst, J.