Диссертация (1150751), страница 23
Текст из файла (страница 23)
J. Chem.Phys., 144(17):174302, 2016.124. O. Kunova, E. Kustova, M. Mekhonoshina, and E. Nagnibeda. Nonequilibrium kinetics, diffusion and heat transfer in shock heated flowsof N 2 /N and O 2 /O mixtures. Chem. Phys., 463:70–81, 2015.125. E. Kustova and D. Giordano. Cross-coupling effects in chemically nonequilibrium viscous compressible flows. Chem. Phys., 379(1-3):83–91,2011.126. E. Kustova and G.
M. Kremer. Chemical reaction rates and nonequilibrium pressure of reacting gas mixtures in the state-to-stateapproach. Chem. Phys., 445:82–94, 2014.127. E. Kustova, E. Nagnibeda, G. Oblapenko, A. Savelev, andI. Sharafutdinov. Advanced models for vibrational-chemical couplingin multi-temperature flows. Chem. Phys., 464:1–13, 2016.128. E. Kustova and G. Oblapenko. Reaction and internal energy relaxationrates in viscous thermochemically non-equilibrium gas flows.
Phys.Fluids, 27:016102, 2015.129. E. Kustova and G. Oblapenko. Mutual effect of vibrational relaxationand chemical reactions in viscous multitemperature flows. Phys. Rev.E, 93:033127, 2016.130. E.V. Kustova. On the role of bulk viscosity and relaxation pressure innon-equilibrium flows. In T. Abe, editor, Rarefied Gas Dynamics: 26thInternational Symposium, volume 1084 of AIP Conference Proceedings,807–812, Melville, NY, 2009. American Institute of Physics.131. E.V. Kustova.
Thermal relaxation rate in viscous multi-temperature gasflows. In D. Levin et al., editor, Rarefied Gas Dynamics, volume 1333 ofAIP Conference Proceedings, 1221–1226, Melville, NY, 2011. AmericanInstitute of Physics.132. E.V. Kustova. Scalar forces/fluxes and reciprocity relations in flowswith strong thermal and chemical non-equilibrium. In M. Mareschal139and A. Santos, editors, Rarefied Gas Dynamics, volume 1501 of AIPConference Proceedings, 1078–1085, Melville, NY, 2012.
AmericanInstitute of Physics.133. E.V. Kustova, D.V. Makarkin, and M.A. Mekhonoshina. Normal meanstress in non-equilibrium viscous N 2 /N flows with dissociation andelectronic excitation. In M. Mareschal and A. Santos, editors, RarefiedGas Dynamics, volume 1501 of AIP Conference Proceedings, 1086–1093,Melville, NY, 2012. American Institute of Physics.134. E.V. Kustova and E.A. Nagnibeda. The influence of non-Boltzmannvibrational distribution on thermal conductivity and viscosity.
InM. Capitelli, editor, Molecular Physics and Hypersonic Flows, 383–392.Kluwer Acad. Publishers, Netherlands, 1996.135. E.V. Kustova, E.A. Nagnibeda, and A. Chauvin.State-to-statenonequilibrium reaction rates. Chem. Phys., 248(2-3):221–232, 1999.136. E.V. Kustova and G.P. Oblapenko. Rates of VT transitions anddissociation and normal mean stress in a non-equilibrium viscousmultitemperature N 2 /N flow. In J.
Fan, editor, Rarefied Gas Dynamics,volume 1628 of AIP Conference Proceedings, 602–609, Melville, NY,2014. American Institute of Physics.137. L. Landau and E. Teller. Theory of sound dispersion.Sowjetunion, 10:34–43, 1936.Phys. Z.138. Z. Li, I. Sohn, D.A . Levin, M.
Mareschal, and A. S Santos. Statespecific vibrational relaxation and dissociation models for nitrogen inshock wave regions. Volume 1501 of AIP Conference Proceedings, 653,43rd Thermophysics Conference, New Orleans, 2012.139. Zh. Li, N. Parsons, and D. A.
Levin. A study of internal energyrelaxation in shocks using molecular dynamics based models. J. Chem.Phys., 143(14):144501, 2015.140. F. E. Lumpkin III, B. L. Haas, and I. D. Boyd.Resolutionof differences between collision number definitions in particle andcontinuum simulations. Phys. Fluids, 3(9):2282–2284, 1991.141. S. O. Macheret, A.
A. Fridman, I. V. Adamovich, J. W. Rich, andC. E. Treanor. Mechanisms of nonequilibrium dissociation of diatomicmolecules. AIAA Paper, 94-1984, 1994. 6th AIAA/ASME Joint140Thermophysics and Heat Transfer Conference, Colorado Springs, June1994.142. W.G. Mallard, F. Westley, J.T. Herron, and R.F. Hampson. NISTChemical Kinetics Database – Ver. 6.0. NIST Standard Reference Data,Gaithersburg, MD, 1994.143. P.V.
Marrone and C.E. Treanor. Chemical relaxation with preferentialdissociation from excited vibrational levels. Phys. Fluids, 6(9):1215–1221, 1963.144. R.C. Millikan and D.R. White. Systematics of vibrational relaxation.J. Chem. Phys., 39:3209–3213, 1963.145. L. Monchick, A.N.G. Pereira, and E.A. Mason. Heat conductivity ofpolyatomic and polar gases and gas mixtures. J.
Chem. Phys., 42:3241,1965.146. M. Panesi, R. L. Jaffe, D. W. Schwenke, and T. E. Magin. Rovibrational4internal energy transfer and dissociation of N 2 (1 Σ+g ) − N ( Su ) systemin hypersonic flows. J. Chem. Phys., 138:044312, 2013.147. M. Panesi, T. E. Magin, A. Bourdon, A. Bultel, and O. Chazot.Electronic excitation of atoms and molecules for the FIRE II flightexperiment.
J. Thermophys. Heat Transfer, 25(3):361–374, 2011.148. M. Panesi, A. Munafò, T. E. Magin, and R. L. Jaffe. Nonequilibriumshock-heated nitrogen flows using a rovibrational state-to-state method.Phys. Rev. E, 90:013009, 2014.149. C. Park. Nonequilibrium Hypersonic Aerothermodynamics. J.Wiley andSons, New York, Chichester, Brisbane, Toronto, Singapore, 1990.150. C.
Park. Rotational relaxation of n2 behind a strong shock wave. J.Thermophys. Heat Transfer, 18(4):527–533, 2004.151. C. Park, J.T. Howe, R.L. Howe, R.L. Jaffe, and G.V. Candler. Reviewof chemical-kinetic problems of future NASA missions, II: Mars entries.J.
Thermophys. Heat Transfer, 8(1):9–23, 1994.152. J.G. Parker. Rotational and vibrational relaxation in diatomic gases.Phys. Fluids, 2:449, 1959.153. R.D. Present. Chapman-Enskog method in chemical kinetics. J. Chem.Phys., 48:4875–4877, 1960.141154. I. Prigogine and E. Xhrouet.On the perturbation of Maxwelldistribution function by chemical reaction in gases. Physica, 15:913–932, 1949.155. B. Rahimi and H. Struchtrup.
Capturing non-equilibrium phenomenain rarefied polyatomic gases: A high-order macroscopic model. Phys.Fluids, 26(5):052001, 2014.156. V.V. Riabov. Approximate calculation of transport coefficients ofEarth and Mars atmospheric dissociating gases. J. Thermophys. HeatTransfer, 10(2):209–216, 1996.157. T. J. Scanlon, C. White, M. K. Borg, R. C. Palharini, E. Farbar, I. D.Boyd, J. M.
Reese, and R. E. Brown. Open-source Direct SimulationMonte Carlo chemistry modeling for hypersonic flows. AIAA Journal,53(6):1670–1680, 2015.158. T. E. Schwartzentruber and I. D Boyd. Progress and future prospectsfor particle-based simulation of hypersonic flow. Progress in AerospaceSciences, 72:66–79, 2015.159. J. Shang and S.T. Surzhikov.
Nonequilibrium radiative hypersonic flowsimulation. Progress in Aerospace Sciences, 53:46–65, 2012.160. F. Sharipov and J. L. Strapasson. Direct Simulation Monte Carlomethod for an arbitrary intermolecular potential.Phys. Fluids,24(1):011703, 2012.161. S.P. Sharma, W.M. Huo, and C. Park.Rate parameters forcoupled vibration-dissociation in a generalized SSH approximation. J.Thermophys. Heat Transfer, 6(1):9–21, 1992.162. B. Shizgal and M.
Karplus. Nonequilibrium contributions to the rate ofreaction. I. Perturbation of the velocity distribution function. J. Chem.Phys., 52:4262–4278, 1970.163. B. Shizgal and M. Karplus. Nonequilibrium contributions to the rate ofreaction. II. Isolated multicomponent system. J. Chem. Phys., 54:4345–4362, 1971.164. Henning Struchtrup. Macroscopic transport equations for rarefied gasflows. Springer, 2005.142165. Henning Struchtrup and Manuel Torrilhon. Regularization of grad’s13 moment equations: derivation and linear analysis.
Phys. Fluids,15(9):2668–2680, 2003.166. F. Thivet. Modeling of hypersonic flows in thermal and chemicalnonequilibrium. Ph. D. thesis, Ecole Centrale Paris, Châtenay-Malabry,France, 1992.167. D. J. Tildesley and M. P. Allen. Computer simulation of liquids. 1987.168. C. E. Treanor and P. V. Marrone. Effect of dissociation on the rate ofvibrational relaxation.
Phys. Fluids, 5(9):1022–1026, 1962.169. C.E. Treanor, I.W. Rich, and R.G. Rehm. Vibrational relaxation ofanharmonic oscillators with exchange dominated collisions. J. Chem.Phys., 48:1798, 1968.170. K.A. Trumble, I. Cozmuta, S. Sepka, P. Jenniskens, and M. Winter.Postflight aerothermal analysis of the stardust sample return capsule.Journal of Spacecraft and Rockets, 47(5):765–774, 2010.171.
P. Valentini, P. Norman, C. Zhang, and T. E. Schwartzentruber.Rovibrational coupling in molecular nitrogen at high temperature: Anatomic-level study. Phys. Fluids, 26(5):056103, 2014.172. P. Valentini, T. E. Schwartzentruber, J. D. Bender, I. Nompelis, andG. V. Candler. Direct molecular simulation of nitrogen dissociationbased on an ab initio potential energy surface.Phys. Fluids,27(8):086102, 2015.173.
D.C. Wadsworth and I.J. Wysong. Vibrational favoring effect in DSMCdissociation models. Phys. Fluids, 9(12):3873–3884, 1997.174. L. Waldmann. Die Boltzmann Gleichung fur Gase mit rotierendenMolekulen. Z. Naturforsch, 12a:660, 1957.175. L. Waldmann and E. Trübenbacher. Formale kinetische theorie vongasgemischen aus anregbaren molehulen. Z. Naturforsch, 17a:364, 1962.176. C.S.
Wang Chang and G.E. Uhlenbeck. Transport phenomena inpolyatomic gases. CM-681, University of Michigan Research Report,1951.177. J.B. Warnatz, U. Riedel, and R. Schmidt. Different levels of airdissociation chemistry and its coupling with flow models. In Advancesin Hypersonics: Modeling Hypersonic Flows. Birkhäuser, Boston, 1992.143178. I. Wysong, S. Gimelshein, N. Gimelshein, W. McKeon, and F. Esposito.Reaction cross sections for two Direct Simulation Monte Carlo models:Accuracy and sensitivity analysis. Phys. Fluids, 24(4):042002, 2012.179. I. J.
Wysong and D. C. Wadsworth. Assessment of Direct SimulationMonte Carlo phenomenological rotational relaxation models. Phys.Fluids, 10(11):2983–2994, 1998.180. I.J. Wysong, R.A. Dressler, Y.H. Chiu, and I.D. Boyd. Direct SimulationMonte Carlo dissociation model evaluation: comparison to measuredcross sections.
J. Thermophys. Heat Transfer, 16(1):83–93, 2002.181. C. Zhang, P. Valentini, and T. E. Schwartzentruber. Nonequilibriumdirection-dependent rotational energy model for use in continuum andstochastic molecular simulation. AIAA journal, 52(3):604–617, 2014.182. V. M.