Диссертация (1150042), страница 23
Текст из файла (страница 23)
- V. 307. - P. 89–94.132. Suzuki H., Ito Y., Noro Y., Koketsu M., Kamijima M., Tomizawa M. Organophosphateagents induce plasma hypertriglyceridemia in mouse via single or dual inhibition of theendocannabinoidhydrolyzing enzyme(s) // Toxicology Letters. – 2014. - V. 225. – P. 153– 157.133. Nakagawa M., Uchiyama M. Effect of organophosphate pesticides on lecithin-cholesterolacyltransferase in human plasma // Biochemical Pharmacology. - 1974. - V. 23. - P. 1641-1645.134. Nomura D.K., Fuijioka K., Issa R.S., Ward A.M., Cravatt B.F., Casida J.E.
Dual roles ofbrain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification //Toxicol. Appl. Pharmacol. – 2008. - V. 228. - P. 42–48.135. Lotti M. The pathogenesis of organophosphate neuropathy // Crit. Rev. Toxicol. – 1992. - V.21. - P. 465–487.136. Ray D.Е. Organophosphorus esters: An evaluation of chronic neurotoxic effects // Leicester.– 1998. - P. 62-70.137.
Шмурак В.И., Курдюков И.Д., Надеев А.Д., Войтенко Н.Г., Глашкина Л.М., ГончаровН.В. Биохимические маркеры интоксикации фосфорорганическими отравляющимивеществами // Токс. вестн. 2012. - № 4 - С. 30-34.138. Galloway T., Handy R. Immunotoxicities of organophosphorus pesticides // Ecotoxicology.– 2003. - V. 12.
- P. 345–363.139. Kamath V., Joshi A.K.R., Rajini P.S. Dimethoate induced biochemical perturbations in ratpancreas and its attenuation by cashew nut skin extract // Pest. Biochem. Physiol. - 2008. - V. 90.- P. 58–65.140. Kamath V., Rajini P.S. Altered glucose homeostasis and oxidative impairment in pancreas ofrat subjected to dimethoate intoxication // Toxicology. – 2007. - V. 231.
- P.137–146.141. Karami-Mohajeri S., Abdollahi M. Toxic influence of organophosphate, carbamate andorganochlorine pesticides on cellular metabolism of lipids, proteins and carbohydrates: asystematic review // Hum. Exp. Toxicol. – 2011. - V. 30. - P.
1119–1140.142. Joshi A.K.R., Rajini P.S. Reversible hyperglycemia in rats following acute exposure toacephate, an organophosphorus insecticide: role of gluconeogenesis // Toxicology. – 2009. - V.257; P. 40–45.143. Amanvermez R., Baydin A., Yardan T., Basol N., Gunay M. Emerging laboratoryabnormalities in suicidal patients with acute organophosphate poisoning // Turk. J. Biochem. –2010. – V. 35. - P. 29–34.112144. Nagi A.I, El-Gamal A.B. Effect of Diazinon, an Organophosphate Insecticide, on PlasmaLipid Constituents in Experimental Animals // J Biochem Mol Biol.
2003. V. 36 N. 5. P. 499-504.145. Lasram M.M., Annabi A.B., Elj N.E., Selmi S., Kamoun A., El-Fazaa S., Gharbi N. Metabolicdisorders of acute exposure to malathion in adult Wistar rats // J Hazardous Materials. – 2009. V. 163. - P. 1052–1055.146. Acker C.I., Nogueira C.W. Chlorpyrifos acute exposure induces hyperglycemia andhyperlipidemia in rats // Chemosphere.
– 2012. - V. 89. - N. 5. - P. 602–608.147. Feng Z., Sun X., Yang J., Hao D., Du L. Metabonomics analysis of urine and plasma fromrats given long-term and low-dose dimethoate by ultra-performance liquid chromatography–massspectrometry // Chemico-Biological Interactions. – 2012. - V. 199. - P. 143–153.148.
Ryhnen R., Herranen J., Korhonen K., Penttil I., Polvilampi M., Puhakainen E. Relationshipbetween serum lipids, lipoproteins and pseudocholinesterase during organophos-phate poisoningin rabbits // Int. J. Biochem. – 1984. - V. 16 - P. 687-690.149. Roszczenkoa A., Rogalska J., Moniuszko-Jakoniuk J., Brzoska M.
The effect of exposure tochlorfenvinphos on lipid metabolism and apoptotic and necrotic cells death in the brain of rats //Experimental and Toxicologic Pathology. – 2013. - V. 65. - P. 531– 539.150. Setin E., Kanbur M., Silici S., Eraslan G. Propetamphos-induced changes in haematologicaland biochemical parameters of female rats: protective role of propolis // Food Chem. Toxicol. –2010. - V.48. - P. 1806–1810.151.
Lasram M.M., Annabi A.B., Elj N.E., Selmi S., Kamoun A., El-Fazaa S., Gharbi N. Metabolicdisorders of acute exposure to malathion in adult Wistar rats // J. Hazard. Mater. – 2009. - V. 163.- P. 1052–1055.152. Quistad G.B., Barlow C., Winrow C.J., Sparks S.E., Casida J.E.
Evidence that mouse brainneuropathy target esterase is a lysophospholipase // Proc. Natl. Acad. Sci. U.S.A. – 2003. - V. 100.- P. 7983–7987.153. Sjakste N., Gutcaits A., Kalvinsh I. Mildronate: an antiischemic drug for neurological indications.//CNS Drug Rev. – 2005. – V.11. – P. 151-168.154. Afanas'ev V.V., Murashko N.K. Mildronat--treatment of cardio-neurologic pathology in ischemia and hypoxia.// Lik Sprava. - 2012.
– V. 7. – P. 68-74. [Article in Russian]155. Klusa V, Beitnere U, Pupure J et al. Mildronate and its neuroregulatory mechanisms: targetingthe mitochondria, neuroinflammation, and protein expression//Medicina (Kaunas). – 2013. – V.49. – P.301-309156. Zhu Y., Zhang G., Zhao J. et al. Efficacy and safety of mildronate for acute ischemic stroke:a randomized, double-blind, active-controlled phase II multicenter trial. //Clin Drug Investig. –1132013.
– V.33. – P.755-760.157. BRENDA [электронный ресурс].158. Мурашко Н.К. Bозможности милдроната в кардионеврологической практике.// Междунар. неврол. журн. – 2012.– № 4.– С. 111–120.159. Tars K, Leitans J, Kazaks A et al. Targeting carnitine biosynthesis: discovery of new inhibitors against γ-butyrobetaine hydroxylase.// J Med Chem. – 2014.
– V. 57. – P. 2213-2236.160. Vilskersts R., Zharkova-Malkova O., Mezhapuke R. Elevated vascular γ-butyrobetaine levelsattenuate the development of high glucose-induced endothelial dysfunction. //Clin Exp PharmacolPhysiol. – 2013. – V.40. – P. 518-524.161. Makrecka M., Svalbe B., Volska K. Mildronate, the inhibitor of L-carnitine transport, inducesbrain mitochondrial uncoupling and protects against anoxia-reoxygenation. //Eur J Pharmacol.
–2014. – V. 723. - P. 55-61.162. Koliesnikova I.E., Nosar V.I., Bratus' L.V. Pharmacological correction of experimental mitochondrial dysfunction of brain stem neurons by rhytmocor and mildronate. //Fiziol Zh. – 2013.– V.59. – P. 58-64. [Article in Ukrainian]163. Kukes V.G., Zhernakova N.I., Gorbach T.V. Efficiency of mildronate in rats of different agewith experimental-induced myocardial ischemia.
// Vestn Ross Akad Med Nauk. – 2013. – V.1. –P. 42-46. [Article in Russian]164. Хлебодаров Ф.Е., Михин В.П. Перспективы применения милдроната у больных с сердечно- сосудистой патологией // Российский кардиологический журнал. — 2009. — № 5. С. 1-5165. Goncharov N.V., Kuznetsov A.V., Radilov A.S. Modern approach to the toxicology of fluoroacetate // Toksikologicheskij vestnik (Toxicological Review). – 2005. – V. 5.
–P.31-44.166. Goncharov N.V., Jenkins R.O., Radilov A.S. Toxicology of fluoroacetate: a review, withpossible directions for therapy research. // J. Appl. Toxicol. – 2006. – V. 26. – P. 148-161.167. Уколов А.И., Орлова Т.И., Гончаров Н.В., Войтенко Н.Г. Исследованиеэнергетического метаболизма крыс при действии фторацетата // Вестник уральскоймедицинской академической науки, 2014, Т. 3, № 49, С. 64-66.168 Yeh K.H., Cheng A.L. Acute confusion induced by a high-dose infusion of 5-fluorouracil andfolinic acid. // J. Formos. Med. Assoc. – 1994.
– V. 93. – P.721-723.169 Tisdale M.J., Brennan R.A. Role of fluroacetate in the toxicity of 2-fluroethylnitrosoureas. //Biochem. Pharmacol. - 1985. – V. 34. – P.3323-3327.170. Feldwick M.G., Noakes P.S., Prause U. et al. The biochemical toxicology of 1,3-difluoro-2propanol, the major ingredient of the pesticide gliftor: the potential of 4-methylpyrazole as anantidote // J. Biochem. Mol. Toxicol. – 1998. – V. 12.
– P.41-52.114171. Keller D.A., Roe D.C., Lieder P.H. Fluoroacetate-mediated toxicity of fluorinated ethanes. //Fundam. Appl. Toxicol. – 1996. –V. 30. – P. 213-219172. Misustova J., Hosek B., Kautska J. Characterization of the protective effect of radioprotectivesubstances by means of long-term changes in oxygen consumption. // Strahlentherapie.- 1980. –V. 156. – P.790-794.173. Song P., Zhao Z.Q.
The involvement of glial cells in the development of morphine tolerance// Neurosci Res. – 2001. – V. 39. – P. 281-286.174. Anikin I.V., Goncharov N.V., Tyndyk M.L., Vojtenko N.G., Pliss G.B., Zabezhinskij M.A.,Popovich I.G., Anisimov V.N. Effect of sodium fluoroacetate on Ehrlich solid tumor and autochthonous sarcoma growth in mice // Vopr. Onkol. – 2013. – V. 59. – P.777-780.175. Schultz R.A., Coetzer J.A., Kellerman T.S., Naude T.W. Observations on the clinical, cardiacand histopathological effects of fluoroacetate in sheep // Onderstepoort. J. Vet.
Res. – 1982. – V.49. – P. 237-245.176. Schultz R.A., Coetzer J.A., Kellerman T.S., Naude T.W. Observations on the clinical, cardiacand histopathological effects of fluoroacetate in sheep // Onderstepoort. J. Vet. Res.- 1982. – V.49. – P.237-245.177. Tsuji H., Shimizu H., Dote T., et al. Effects of sodium monofluoroacetate on glucose, aminoacid, and fatty-acid metabolism and risk assessment of glucose supplementation // Drug Chem.Toxicol.
– 2009. – V. 32. - P.353-361178. Cheng X., Wanga G., Ma Z., Chen Y. et al. Exposure to 2,5-hexanedione can induce neuralmalformations in chick embryos.//NeuroToxicology. - 2012. – V. 33. – P. 1239–1247.179. Spencer P.S., Schaumburg H.H., Sabri M.I., Veronesi B. The enlarging view of hexacarbonneurotoxicity.// Crit. Rev. Toxicol. – 1980. – V. 7. – P. 279–356.180. Huang C.C. Polyneuropathy induced by n-hexane intoxication in Taiwan.//Acta Neurol. Taiwan.