Диссертация (1149687), страница 12
Текст из файла (страница 12)
18, no. 6. — Pp. 555–563.Estimation of Regression Parameters with ArbitraryNoise / A. V. Goldenshluger, B. T. Polyak //tics.47.Mathematical Methods of Statis-— 1993. — Vol. 2, no. 1. — Pp. 18–29.Granichin, O. N. Simultaneous perturbation stochastic approximation for tracking under unknown but bounded disturbances / O. N. Granichin, N. O.
Amelina //IEEE Trans. Automat. Contr. —2015. — Vol. 60, no. 6. — Pp. 1653–1658.8648.Granichin, O.Discrete-time minimum tracking based on stochastic approxi-mation algorithm with randomized differences / O. Granichin, L. Gurevich,A. Vakhitov // 48th Conf. Decision Control. Shanghai. China. —2009. —Pp. 5763–5767.49.Granichin, O.Randomized Algorithms in Automatic Control and Data Min-ing / O. Granichin, V. Volkovich, D. Toledano-Kitai.
— Heidelberg New YorkDordrecht London: Springer–Verlag, 2015.50.Guizzo, E.How google’s self-driving car works / E. Guizzo //IEEE SpectrumOnline.51.Han, M.Reconstruction of a scene with multiple linearly moving objects /M. Han, T. Kanade // In: Proc. of IEEE Conference on the Computer Visionand Pattern Recognition. — 2000. — Pp. 542–549.52.Harris, C.
A combined corner and edge detector / C. Harris, M. Stephens // InAlvey vision conference. — Vol. 15. — 1988. — Pp. 50–50.53.Hartley, R.Multiple View Geometry in Computer Vision / R. Hartley, A. Zis-serman. — Cambridge University Press, 2003.54.Heikkila, J. A four-step camera calibration procedure with implicit image correction / J. Heikkila, O. Silven // Proc of the IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition. — 1997. — Pp.
1106–1112.55.Horn, B. K. P.Determining optical flow / B. K. P. Horn, B. G. Schunck //Artificial intelligence.56.Kahl, F.— 1983. — Vol. 17. — Pp. 185–203.Multiple-view geometry under the L1-Norm / F. Kahl, R. Hartley //IEEE Trans. on Pattern Analysis and Machine Intelligence. — Vol. 30. — 2008.8757.Kalman, R. E.A new approach to linear filtering and prediction problems /R.
E. Kalman //Journal of Fluids Engineering.— 1960. — Vol. 82. — Pp. 35–45.58.Kalman, R. E.NewresultsR. E. Kalman, R. S. Bucy //inlinearfilteringandpredictionJournal of Fluids Engineering. —theory/1961. — Vol. 83.— Pp. 95–108.59.Kiefer, H.Stochastic estimation of the maximum of a regression function /H.
Kiefer, J. Wolfowitz //Annals of Mathematical Statistics. —1952. — Vol. 23,no. 3. — Pp. 462–466.60.Klein, G.Parallel tracking and mapping for small AR workspaces / G. Klein,D. Murray // 6th IEEE and ACM International Symposium on Mixed andAugmented Reality. — 2007. — Pp. 225–234.61. Aflexibleandscalableslamsystemwithfull3dmotionestimation/S. Kohlbrecher, O.
Von Stryk, J. Meyer, U. Klingauf // International Symposium on Safety, Security, and Rescue Robotics (SSRR). — 2011. — Pp. 155–160.62.Konecny, G.The international society for photogrammetry and remote sensing75 years old, or 75 years young / G. Konecny //and Remote Sensing.63.Krivokon, D. S.Photogrammetric Engineering— 1985. — Vol. 51, no. 7. — Pp. 919–933.Randomized algorithm for estimation of moving point positionusing single camera / D. S. Krivokon, A. T. Vakhitov // Proc.
of the IEEE 53rdAnnual Conference on Decision and Control (CDC). — 2014. — Pp. 5189–5194.64.Krivokon, D. S.Non-Stationary Optimization With Prediction Step for ObjectTracking With Two Cameras / D. S. Krivokon, A. T. Vakhitov // Proc. of the14th International Student Olympiad on Automatic Control (Baltic Olympiad).Saint-Petersburg.
— 2011. — Pp. 112–115.8865.Kushner, H. J.Stochastic Approximation Algorithms and Applications /H. J. Kushner, G. G. Yin. — New York: Springer–Verlag, 2002.66.Levenberg, K.A Method for the solution of certain non-linear problems in leastsquares / K. Levenberg //The Quarterly of Applied Mathematics.— 1944. —Vol. 2. — Pp. 164–168.67.Lourakis, M.The Design and Implementation of a Generic Sparse BundleAdjustment Software Package Based on the Levenberg-marquardt Algorith /M. Lourakis, A. Argyros //Science-FORTH.68.Lourakis, M.Technical Report 340.
Institute of Computer— 2004.SBA: a software package for generic sparse bundle adjustment /M. Lourakis, A. Argyros // ACM Transactions on Mathematical Software. —2009.69.Lowe, D. G.DistinctiveD. G. Lowe //International journal of computer vision.imagefeaturesfromscale-invariantkeypoints/— 2004. — Vol. 60,no. 1. — Pp. 91–110.70.Lucas, B. D.An iterative image registration technique with an application tostereo vision / B. D.
Lucas, T. Kanade //In IJCAI.—1981. —Vol. 81. —Pp. 674–679.71.Lucchese, L.Using saddle points for subpixel feature detection in camera cali-bration targets / L. Lucchese, S. K. Mitra // IEEE Asia-Pacific Conference onCircuits and Systems. — Vol. 2. — 2002. — Pp. 191–195.72.Marr, D. A computational theory of human stereo vision / D. Marr, T. Poggio //Proceedings of the Royal Society of London B: Biological Sciences.
— Vol. 204.— 1979. — Pp. 301–328.8973.Newcombe, R. A. DTAM: Dense tracking and mapping in real-time / R. A. Newcombe, S. J. Lovegrove, A. J. Davison // IEEE International Conference onComputer Vision (ICCV). — 2011. — Pp. 2320–2327.74.Ooi, B. C.Spatial kd-tree: An indexing mechanism for spatial databases /B. C. Ooi, K. J. McDonell, R. Sacks-Davis // In IEEE COMPSAC. — Vol. 87.— 1987. — Pp. 85–85.75.Robbins, H.Stochastic Approximation Method / H. Robbins, S.
A Monro //Annals of Mathematical Statistics.76.— 1951. — Vol. 22, no. 3. — Pp. 400–407.Rosten, E. Faster and better: A machine learning approach to corner detection /E. Rosten, R. Porter, T. Drummond // IEEE Transactions on Pattern Analysisand Machine Intelligence. — Vol. 32. — 2010. — Pp. 105–119.77. A comparison and evaluation of multi-view stereo reconstruction algorithms /S. M. Seitz, B. Curless, J. Diebel et al.
// IEEE Computer Society Conferenceon Computer vision and pattern recognition. — Vol. 1. — 2006. — Pp. 519–528.78.Shi, J.Good features to track / J. Shi, C. Tomasi //IEEE Computer SocietyConference on Computer Vision and Pattern Recognition.— 1994. — Pp. 593–600.79.Snavely, N.Photo tourism: exploring photo collections in 3D / N. Snavely,S.
M. Seitz, R. Szeliski // In ACM transactions on graphics (TOG). — Vol. 25.— 2006. — Pp. 835–846.80.Spall, J. C. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation / J. C. Spall // IEEE Trans. Automat. Contr.— Vol. 37. — 1992. — Pp. 332–341.81.Spall, J. C.
Introduction to stochastic search and optimization: estimation, simulation, and control / J. C. Spall. — John Wiley & Sons, 2005. — P. 618.9082.Strasdat, H. J.Real-time monocular slam: Why filter? / H. J. Strasdat,M. M Montiel, A. J. Davison // IEEE International Conference on Roboticsand Automation (ICRA). — 2010. — Pp. 2657–2664.83.Sturm, P.Structure and motion for dynamic scenes the case of points movingin planes / P. Sturm // In: Proc. of the European Conference on ComputerVision. — 2002.
— Pp. 507–509.84. Bundle adjustment — a modern synthesis / B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon // Proc. of the Int. Workshop on Vision Algorithms. SpringerVerlag. — 1999. — Pp. 298–372.85.Vakhitov, A. Adaptive control of SISO plant with time-varying coefficients basedon random test perturbation / A. Vakhitov, O.
Granichin, V. Vlasov // In Proc.of the American Control Conference. — 2010. — Pp. 4004–4009.86.Zarrouati, N.SO (3)-invariant asymptotic observers for dense depth field esti-mation based on visual data and known camera motion / N. Zarrouati, E. Aldea,P. Rouchon // Proc of the IEEE American Control Conference (ACC). — 2012.— Pp. 4116–4123.87.Walree,P.Distortion/P.Walreehttp://toothwalker.org/optics/distortion.html.88.Zhang, Z.//Photographicoptics.— 2009. — Vol. 4.Flexible camera calibration by viewing a plane from unknown orien-tations / Z.
Zhang // In: Proc. of the 7th IEEE International Conference onComputer Vision. — Vol. 1. — 1999. — Pp. 666–673.91Список рисунков1.1Модель камеры.. . . . . . . . . . . . . . . . . . . . . . . . . . . .171.2Пример “уголков” на изображении. . . . . . . . . . . . . . . . . . .271.3Калибровка камеры при помощи Matlab Calibration Toolbox. . . .293.1Случай линейно движущейся точки и помехи . . . . . . . . . . . . . . .623.2Истинное значение глубины (черная сплошная линия) и оценки нашегометода (серая пунктирная линия) для стационарного случая без помех. .
. .633.3Стационарный случай с помехой . . . . . . . . . . . . . . . . . . . . .633.4Пример истинной траектории (сплошная линия) и оценокалгоритма для простого случая без движения точки и малойошибки в начальном приближении.3.5. . . . . . . . . . . .