Диссертация (1149648), страница 9
Текст из файла (страница 9)
Òîãäà âåêòîð-ôóíêöèÿ∗hG(t, z, u) := h = s1 (t) + λXωi∗ ei , s2 (t)i+ 2λν u(t)∗(4.18)i∈I0ÿâëÿåòñÿ íàèìåíüøèì ïî íîðìå ñóáãðàäèåíòîì ôóíêöèîíàëà Fλ â òî÷êå [z, u] â äàííîì ñëó÷àå(ïðè ϕ(z, u) > 0). Åñëè ||G(z, u)|| > 0, òî âåêòîð-ôóíêöèÿ −G(t, z, u)/||G(z, u)|| ÿâëÿåòñÿíàïðàâëåíèåì ñóáãðàäèåíòíîãî ñïóñêà ôóíêöèîíàëà Fλ â òî÷êå [z, u].Á. Ïóñòü ϕ(z, u) = 0.  ýòîì ñëó÷àåminh∈∂Fλ (z,u)2hZTnZT∂f0∂f0dτ ++ωi , i∈I0 , ν, v∂x∂z0tZ T 0nXXo2∂fv(τ )dτ +ωi ei +µj e jdt ++λ v(t) −∂xtj=1i∈I0Z Tn0o2 i∂f0∂f++λ −v(t) + 2νu(t) dt ,∂u∂u0||h|| := min ||h1 ||2 + ||h2 ||2 =min(4.19)ãäå h1 = h1 (t, z, u), h2 = h2 (t, z, u), à âåëè÷èíû ωi , i ∈ I0 , µj , j = 1, n, ν è âåêòîð-ôóíêöèÿ v(t)îïðåäåëåíû â (4.11).Ñîñòàâèì ôóíêöèîíàëXHµ (v, ω, ν) = ||h||2 + µ max{0, ||v||2 − 1} + max{0, ν 2 − 1} +max{0, ωi2 − 1} ,i∈I053(4.20)ãäå ν = 2ν − 1, à âåêòîð ω ∈ R|I0 | ñîñòîèò èç êîìïîíåíò ωi , i ∈ I0 .Îáîçíà÷èìXmax{0, ωi2 − 1} .Ψ(v, ω, ν) = µ max{0, ||v||2 − 1} + max{0, ν 2 − 1} +i∈I0Ââåä¼ì ìíîæåñòâàΩ = [v, ω, ν] ∈ Pn [0, T ] × R|I0 | × R Ψ(v, ω, ν) = 0 ,Ωδ = [v, ω, ν] ∈ Pn [0, T ] × R|I0 | × R Ψ(v, ω, ν) < δ .ÒîãäàΩδ \ Ω = [v, ω, ν] ∈ Pn [0, T ] × R|I0 | × R 0 < Ψ(v, ω, ν) < δ .Òàêæå ââåä¼ì ñëåäóþùèå ìíîæåñòâàV0 = v ∈ Pn [0, T ] TZv(t), v(t) dt − 1 = 0 ,0V− = v ∈ Pn [0, T ] TZv(t), v(t) dt − 1 < 0 ,0V+ = v ∈ Pn [0, T ] TZv(t), v(t) dt − 1 > 0 ,0N0 = ν ∈ R | ν 2 − 1 = 0 ,N− = ν ∈ R | ν 2 − 1 < 0 ,N+ = ν ∈ R | ν 2 − 1 > 0 ,Wi0 = ωi ∈ R | ωi2 − 1 = 0 ,Wi− = ωi ∈ R | ωi2 − 1 < 0 ,Wi+ = ωi ∈ R | ωi2 − 1 > 0 ,ãäå i ∈ I0 .Ëåììà 4.4.1.
Ïóñòü ôóíêöèîíàë h(v, ω, ν) ÿâëÿåòñÿ ëèïøèöåâûì íà ìíîæåñòâå Ωδ \Ω. Åñ-ëè íàéä¼òñÿ òàêîå ïîëîæèòåëüíîå ÷èñëî µ0 < ∞, ÷òî äëÿ âñåõ µ > µ0 ñóùåñòâóåò òî÷êà[v(µ), ω(µ), ν(µ)] ∈ Pn [0, T ] × R|I | × R, äëÿ êîòîðîé Hµ v(µ), ω(µ), ν(µ) = = inf Hµ (v, ω, ν),[v,ω,ν]òî ôóíêöèîíàë (4.20) áóäåò òî÷íîé øòðàôíîé ôóíêöèåé.0Äîêàçàòåëüñòâî.
Àíàëîãè÷íî äîêàçàòåëüñòâó Òåîðåìû 2.5.1.54Òàêèì îáðàçîì, ïðè ñäåëàííûõ â Ëåììå 4.4.1 ïðåäïîëîæåíèÿõ ñóùåñòâóåò òàêîå ÷èñëî0 < µ∗ < ∞, ÷òî ∀µ > µ∗ çàäà÷à (4.19) ýêâèâàëåíòíà çàäà÷å ìèíèìèçàöèè ôóíêöèîíàëà (4.20)íà âñ¼ì ïðîñòðàíñòâå. Äàëåå áóäåì ñ÷èòàòü, ÷òî â ôóíêöèîíàëå (4.20) ÷èñëî µ ôèêñèðîâàíîè âûïîëíåíî óñëîâèå µ > µ∗ .Ôóíêöèîíàë (4.20) ñóáäèôôåðåíöèðóåì, è åãî ñóáäèôôåðåíöèàë â òî÷êå[v, ω, ν] âûðàæàåòñÿ ïî ôîðìóëåËåììà 4.4.2.n∂Hµ (v, ω, ν) = hv + 2µξv(t), hω1 + 2µζ1 ω1 , . .
. , hω|I0 | + 2µζ|I0 | ω|I0 | , hν + 2µζ0 ν ξ ∈ [0, 1], v ∈ V0 , ξ = 1, v ∈ V+ , ξ = 0, v ∈ V− ,(4.21)ζ0 ∈ [0, 1], ν ∈ N0 , ζ0 = 1, ν ∈ N+ , ζ0 = 0, ν ∈ N− ,oζi ∈ [0, 1], ωi ∈ Wi0 , ζi = 1, ωi ∈ Wi+ , ζi = 0, ωi ∈ Wi− , i ∈ I0 .Äîêàçàòåëüñòâî. Âîçüì¼ì êëàññè÷åñêóþ âàðèàöèþ ôóíêöèîíàëà h. Âû÷èñëèì ñëåäóþùèåâåêòîð-ôóíêöèè, âõîäÿùèå â ôîðìóëó (4.21).hv = h1v + h2v ,ãäåh1vZh= 2λ λv(t) − λtZT ∂f 0∂fv(τ )dτ − λ∂x∂xtZ0∂fv(τ )dτ + λ∂xnT ∂fX∂f0∂f X∂f0dτ ++λ E−tωi ei +µj e j −∂x∂z∂x∂xj=1i∈I+tZ tZ0T0∂xτZ tnZ0 ∂f 0τTv(ξ)dξdτ +∂f0 o i∂f0dξ +dτ ,∂x∂z ∂f 0∂f ∂f0+λ −v(t) + νu(t) + u(t) ,∂u ∂u∂uZ Tn0 o= 2λq(t) + λωi ei ei dt, i ∈ I0 ,h2v = −2λhωi0ãäåZq(t) =tT∂f0∂f0dτ ++ λ v(t) −∂x∂zZhν = 2λTnZT ∂f 0∂xtv(τ )dτ +Xk∈I0 /{i}ωk ek +nXµj e j ,j=1o0r(t) + λνu(t) u(t) dt,0ãäå ∂f 0∂f0r(t) =+λ −v(t) + u(t) .∂u∂uÊëàññè÷åñêàÿ âàðèàöèÿ ôóíêöèîíàëà Ψ áåð¼òñÿ òàê æå, êàê â äîêàçàòåëüñòâå Òåîðåìû 3.3.1Ëåììà äîêàçàíà.55Åñëè ||v||2 6 1, |ωi| 6 1, i ∈ I0, |ν| 6 1, òî ôóíêöèîíàë (4.20) ñóáäèôôåðåíöèðóåì, è åãî ñóáäèôôåðåíöèàë â òî÷êå [v, ω, ν] âûðàæàåòñÿ ïî ôîðìóëåÑëåäñòâèå 4.4.1.∂Hµ (v, ω, ν) =nhv + 2µξv(t), hω1 + 2µζ1 ω1 , .
. . , hω|I0 | + 2µζ|I0 | ω|I0 | , hν + 2µζ0 ν ξ ∈ [0, 1], v ∈ V0 , ξ = 0, v ∈ V− , (4.22)oζ0 ∈ [0, 1], ν ∈ N0 , ζ0 = 0, ν ∈ N− , ζi ∈ [0, 1], ωi ∈ Wi0 , ζi = 0, ωi ∈ Wi− , i ∈ I0 .Äîêàçàòåëüñòâî. Åñëè ||v||2 6 1, |ωi| 6 1, i ∈ I0, |ν| 6 1, òî V+ = ∅, N+ = ∅, Wi+ = ∅, i ∈ I0,è ôîðìóëà (4.22) ñëåäóåò èç (4.21).Çàìå÷àíèå 4.4.1. Ñóáäèôôåðåíöèàë ∂Fλ(z, u) ÿâëÿåòñÿ âûïóêëûì êîìïàêòíûì ìíîæåñòâîì,ïîýòîìó íåîáõîäèìîå óñëîâèå ìèíèìóìà ôóíêöèîíàëà Hµ (v, ω, ν) áóäåò è äîñòàòî÷íûì [24].Èç óñëîâèÿ ìèíèìóìà, êîòîðîå âûïèñàíî ïåðåä Òåîðåìîé 4.3.3 (áåð¼ì âìåñòî ôóíêöèîíàëà Fλ ôóíêöèîíàë Hµ ) è Çàìå÷àíèÿ 4.4.1 èìååì ñëåäóþùóþ ëåììó.Äëÿ òîãî ÷òîáû òî÷êà [v∗, ω∗, ν ∗] ∈ Pn[0, T ] × R|I | × R äîñòàâëÿëà ìèíèìóìôóíêöèîíàëó (4.20), íåîáõîäèìî è äîñòàòî÷íî, ÷òîáûËåììà 4.4.3.0(4.23)0n+|I0 |+1 ∈ ∂Hµ (v ∗ , ω ∗ , ν ∗ ),ãäå 0n+|I |+1 íóëåâîé ýëåìåíò ïðîñòðàíñòâà Pn[0, T ] × R|I | × R, à âûðàæåíèå äëÿ ñóáäèôôåðåíöèàëà ∂Hµ(v, ω, ν) âûïèñàíî â (4.22).00Íàéä¼ì ìèíèìàëüíûé ïî íîðìå ñóáãðàäèåíò h = h(t, v, ω, ν) ∈ ∂Hµ (v, ω, ν) â òî÷êå[v, ω, ν], òî åñòü ðåøèì çàäà÷óminξ, ζ0 , ζi ,T 2||h|| =minhv + 2µξv(t) dt +i∈I0ξ, ζ0 , ζi , i∈I00X2 i2 ,+hωi + 2µζi ωi + hν + 2µζ0 νhZ2(4.24)i∈I0ãäå âåëè÷èíû ξ , ζ0 , ζi , i ∈ I0 , îïðåäåëåíû â (4.21).Çàäà÷à (4.24) ïðåäñòàâëÿåò ñîáîé çàäà÷ó êâàäðàòè÷íîãî ïðîãðàììèðîâàíèÿ ïðè íàëè÷èè ëèíåéíûõ îãðàíè÷åíèé è ìîæåò áûòü ðåøåíà îäíèì èç èçâåñòíûõ ìåòîäîâ [17], [18].Îáîçíà÷èì ξ ∗ , ζ0∗ , ζi∗ , i ∈ I0 , å¼ ðåøåíèå.
Òîãäà âåêòîð-ôóíêöèÿ∗G(t, v, ω, ν) := h = hv + 2µξ ∗ v(t), hω1 + 2µζ1∗ ω1 , . . . ,hω|I0 | + 2µζ|I∗ 0 | ω|I0 | , hν + 2µζ0∗ ν56ÿâëÿåòñÿ íàèìåíüøèì ïî íîðìå ñóáãðàäèåíòîì ôóíêöèîíàëà Hµ â òî÷êå [v, ω, ν]. Åñëè||G(ω, ν)|| > 0, òî âåêòîð-ôóíêöèÿ −G(t, v, ω, ν)/||G(ω, ν)|| ÿâëÿåòñÿ íàïðàâëåíèåì ñóáãðàäèåíòíîãî ñïóñêà ôóíêöèîíàëà Hµ â òî÷êå [v, ω, ν].Îïèøåì ñëåäóþùèé ìåòîä ñóáäèôôåðåíöèàëüíîãî ñïóñêà äëÿ ïîèñêà òî÷åê ìèíèìóìàôóíêöèîíàëà Hµ (v, ω, ν).
Ôèêñèðóåì ïðîèçâîëüíóþ òî÷êó [v1 , ω1 , ν 1 ] ∈ Pn [0, T ] × R|I0 | × R.Ïóñòü óæå ïîñòðîåíà òî÷êà [vk , ωk , ν k ] ∈ Pn [0, T ]×R|I0 | ×R. Åñëè âûïîëíåíî óñëîâèå ìèíèìóìà(4.23), òî òî÷êà [vk , ωk , ν k ] ÿâëÿåòñÿ òî÷êîé ìèíèìóìà ôóíêöèîíàëà Hµ (v, ω, ν), è ïðîöåññïðåêðàùàåòñÿ.  ïðîòèâíîì ñëó÷àå ïîëîæèì[vk+1 , ωk+1 , ν k+1 ] = [vk , ωk , ν k ] − αk Gk ,ãäå âåêòîð-ôóíêöèÿ Gk = G(t, vk , ωk , ν k ) ïðåäñòàâëÿåò ñîáîé íàèìåíüøèé ïî íîðìå ñóáãðàäèåíò ôóíêöèîíàëà Hµ â òî÷êå [vk , ωk , ν k ], à âåëè÷èíà αk ÿâëÿåòñÿ ðåøåíèåì ñëåäóþùåé çàäà÷èîäíîìåðíîé ìèíèìèçàöèèmin Hµ ([vk , ωk , ν k ] − αGk ) = Hµ ([vk , ωk , ν k ] − αk Gk ).α>0(4.25)ÒîãäàHµ (vk+1 , ωk+1 , ν k+1 ) 6 Hµ (vk , ωk , ν k ).Åñëè ïîñëåäîâàòåëüíîñòü {[vk , ωk , ν k ]} êîíå÷íà, òî ïîñëåäíÿÿ å¼ òî÷êà ÿâëÿåòñÿ òî÷êîé ìèíèìóìà ôóíêöèîíàëà Hµ (v, ω, ν) ïî ïîñòðîåíèþ.
Åñëè æå ïîñëåäîâàòåëüíîñòü {[vk , ωk , ν k ]}áåñêîíå÷íà, òî îïèñàííûé ïðîöåññ ìîæåò è íå ïðèâåñòè ê òî÷êå ìèíèìóìà ôóíêöèîíàëàHµ (v, ω, ν), ïîñêîëüêó ñóáäèôôåðåíöèàëüíîå îòîáðàæåíèå ∂Hµ (v, ω, ν) íå ÿâëÿåòñÿ íåïðåðûâíûì â ìåòðèêå Õàóñäîðôà [24].Îáîçíà÷èì v ∗ , ω ∗ , ν ∗ ðåøåíèå çàäà÷è (4.19). Òîãäà âåêòîð-ôóíêöèÿh Z T ∂f∂f00∗G(t, z, u) := h =dτ ++∂x∂ztZ T 0nXX ∗∂f∗∗v (τ )dτ +ωi ei +µj ej ,λ v (t) −∂xtj=1i∈I00i∂f0∂f∗∗+λ −v (t) + 2ν u(t)∂u∂u(4.26)ÿâëÿåòñÿ íàèìåíüøèì ïî íîðìå ñóáãðàäèåíòîì ôóíêöèîíàëà Fλ â òî÷êå [z, u] â äàííîì ñëó÷àå(ïðè ϕ(z, u) = 0).
Åñëè ||G(z, u)|| > 0, òî âåêòîð-ôóíêöèÿ −G(t, z, u)/||G(z, u)|| ÿâëÿåòñÿíàïðàâëåíèåì ñóáãðàäèåíòíîãî ñïóñêà ôóíêöèîíàëà Fλ â òî÷êå [z, u].Òàêèì îáðàçîì, â ïóíêòàõ À è Á ðåøàëàñü çàäà÷à ïîèñêà íàïðàâëåíèÿ ñóáãðàäèåíòíîãîñïóñêà ôóíêöèîíàëà Fλ â òî÷êå [z, u].  ñëó÷àå ϕ(z, u) > 0 (ïóíêò À) äàííàÿ çàäà÷à ðåøàåòñÿ57ñðàâíèòåëüíî ïðîñòî, òàê êàê ïðåäñòàâëÿåò ñîáîé çàäà÷ó êâàäðàòè÷íîãî ïðîãðàììèðîâàíèÿïðè íàëè÷èè ëèíåéíûõ îãðàíè÷åíèé.  ñëó÷àå ϕ(z, u) = 0 (ïóíêò Á) ïîìèìî íåèçâåñòíûõâåëè÷èí ω , ν òðåáóåòñÿ òàêæå íàéòè âåêòîð-ôóíêöèþ v(t). Ýòî áîëåå ñëîæíàÿ çàäà÷à, ðåøàòüêîòîðóþ ìîæíî ÷èñëåííûìè ìåòîäàìè, íàïðèìåð, ìåòîäîì ñóáäèôôåðåíöèàëüíîãî ñïóñêà,êàê ýòî îïèñàíî â ïóíêòå Á.Çàìå÷àíèå 4.4.2.
Îòìåòèì, ÷òî â ñèëó ñòðóêòóðû ôóíêöèîíàëà Hµ çàäà÷à (4.25) ïîèñêà øàãàñïóñêà ðåøàåòñÿ àíàëèòè÷åñêè. Êðîìå òîãî, çàäà÷à (4.24) íàõîæäåíèÿ íàïðàâëåíèÿ ñïóñêà ñïîìîùüþ ìåòîäîâ êâàäðàòè÷íîãî ïðîãðàììèðîâàíèÿ ìîæåò áûòü ðåøåíà çà êîíå÷íîå ÷èñëîèòåðàöèé.Îïèøåì ìåòîä ñóáäèôôåðåíöèàëüíîãî ñïóñêà äëÿ ïîèñêà ñòàöèîíàðíûõ òî÷åê ôóíêöèîíàëà Fλ . Ôèêñèðóåì ïðîèçâîëüíóþ òî÷êó [z1 , u1 ] ∈ Pn [0, T ] × Pm [0, T ]. Ïóñòü óæå ïîñòðîåíàòî÷êà [zk , uk ] ∈ Pn [0, T ] × Pm [0, T ]. Åñëè âûïîëíåíî óñëîâèå ìèíèìóìà (4.16), òî òî÷êà [zk , uk ]ÿâëÿåòñÿ ñòàöèîíàðíîé òî÷êîé ôóíêöèîíàëà Fλ (z, u), è ïðîöåññ ïðåêðàùàåòñÿ.  ïðîòèâíîìñëó÷àå ïîëîæèì[zk+1 , uk+1 ] = [zk , uk ] − αk Gk ,ãäå âåêòîð-ôóíêöèÿ Gk = G(t, zk , uk ) ïðåäñòàâëÿåò ñîáîé íàèìåíüøèé ïî íîðìå ñóáãðàäèåíòôóíêöèîíàëà Fλ â òî÷êå [zk , uk ].















