Диссертация (1149648), страница 4
Текст из файла (страница 4)
Íàéä¼ì ïðîèçâîäíóþ P20 (z, v) ïî íàïðàâëåíèþ v ∈ Cn [0, T ]ôóíêöèîíàëà (2.7). ÈìååìP2 (z + αv) =h ZTZtf x0 +0=h ZT i2z(τ ) + αv(τ )dτ, z(t) + αv(t), t dt =0Ztf x0 +0z(τ )dτ, z(t), t dt + αZT n0ZT n= P2 (z) + 2α∂f,∂xZto∂fv(τ )dτ +, v(t) dt∂z0ZT n ZTZtZTZtf x0 +0o∂f∂fdτ, v(t) +, v(t) dt∂x∂zt0i2o∂fv(τ )dτ +, v(t) dt + o(α) =∂z000= P2 (z) + 2α∂f,∂xz(τ )dτ, z(t), t dt + o(α) =0ZTZtf x0 +0z(τ )dτ, z(t), t dt + o(α),0o(α)→ 0 ïðè α ↓ 0. (2.8)αÎòñþäà ïîëó÷àåìP2 (z + αv) − P2 (z)=α↓0αZT n ZTZTZto∂f∂f=2dτ, v(t) +, v(t) dt f x0 + z(τ )dτ, z(t), t dt.∂x∂zP20 (z, v) = lim0t0(2.9)0Ò. å.
ôóíêöèîíàë P2 äèôôåðåíöèðóåì ïî Ãàòî [42] â òî÷êå z è åãî ãðàäèåíò âûðàæàåòñÿ ïîôîðìóëåZTZth ZT ∂f∂f idτ +f x0 + z(τ )dτ, z(t), t dt.∇P2 (z) = 2∂x∂z0t(2.10)0Îòñþäà çàêëþ÷àåì, ÷òî, äëÿ òîãî ÷òîáû âåêòîð-ôóíêöèÿ z ∗ ∈ Cn [0, T ] áûëà òî÷êîé ìèíèìóìàôóíêöèîíàëà (2.7), íåîáõîäèìî âûïîëíåíèå ñîîòíîøåíèéZTZth ZT ∂f∂f idτ +f x0 + z ∗ (τ )dτ, z ∗ (t), t dt = 0n∂x∂zt0∀t ∈ [0, T ],0(2.11)∂f (x∗ , z ∗ , T )∂zZTZtf x0 +0z ∗ (τ )dτ, z ∗ (t), t dt = 0,0â êîòîðûõ 0n íóëåâîé ýëåìåíò ïðîñòðàíñòâà Cn [0, T ]. Âòîðîå ðàâåíñòâî â (2.11) âûòåêàåòèç ïåðâîãî ïðè t = T è ïðåäñòàâëÿåò ñîáîé óñëîâèå òðàíñâåðñàëüíîñòè íà ïðàâîì êîíöå.Òåïåðü ïîëó÷èì âûðàæåíèÿ, àíàëîãè÷íûå (2.9) è (2.10), è íåîáõîäèìîå óñëîâèå ìèíèìóìà, ïîäîáíîå (2.11), äëÿ ¾ïîëèíîìèàëüíîãî¿ ôóíêöèîíàëàPk I1 (x), . .
. , In (x) .19 îáùåì ñëó÷àå ¾ïîëèíîìèàëüíûé¿ ôóíêöèîíàë èìååò âèäPk =`Xai Fi ,i=1ãäåFi = ZTmi1 ZTminf1 dt× ... ×fn dt.00Çäåñüfj = fj (x, z, t),k = max(mi1 + . . . + min ),i=1,`j = 1, n,mij ∈ N ∪ {0}.Îáîçíà÷èì ZTmi1 −1 ZTmi2 ZTmini f1 =f1 dt×f2 dt× ... ×fn dt, åñëè mi1 > 1,000f1i = 0, åñëè mi1 = 0,... ZTmi1 ZTmij−1 ZTmij −1ifj =f1 dt× ...
×fj−1 dt×fj dt×000TTZmij+1Zmin×fj+1 dt× ··· ×fn dt, åñëè mij > 1,00f i = 0, åñëè mi = 0,jj...min−1 ZTmin −1 ZTmi1 ZTi fn =f1 dt× ... ×fn−1 dt×fn dt, åñëè min > 1,000ãäåfji=fjifni = 0, åñëè min = 0,Zx0 +tz(τ )dτ, z, t , i = 1, `, j = 1, n.0Âíà÷àëå íàéä¼ì âàðèàöèþ ôóíêöèîíàëà Fi . Ïðîâîäÿ âû÷èñëåíèÿ, àíàëîãè÷íûå (2.8),(2.9), ïîëó÷àåì" ZTFi (z + αv) =Ztf 1 x0 +0#mi1z(τ ) + αv(τ )dτ, z(t) + αv(t), t dt× ...×020" ZT×Ztf n x0 +0=" ZT0#ZT ZTmi1 ZTmi1 −1∂f1∂f1if1 dt+ αm1dτ +, v(t) dtf1 dt+ o(α) × . . . ×∂x∂z0×" ZT#minz(τ ) + αv(τ )dτ, z(t) + αv(t), t dt=t00#ZT ZTmin ZTmin −1∂f∂fnnfn dtdτ +, v(t) dtfn dt+ αmin+ o(α) =∂x∂z00= ZTtmi1f1 dt× ...
×0 ZT0minfn dt+ αmi1 f1i0ZT ZT0ZT ZT+ . . . + αmin fni0∂f1∂f1dτ +, v(t) dt +∂x∂zt∂fn∂fndτ +, v(t) dt + o(α),∂x∂zto(α)→ 0 ïðè α ↓ 0, (2.12)αFi0 (z, v)=mi1 f1iZT ZT0∂f1∂f1dτ +, v(t) dt + . . . +∂x∂zt+min fniZT ZT0∂fn∂fndτ +, v(t) dt + o(α),∂x∂zto(α)→ 0 ïðè α ↓ 0, (2.13)αè ãðàäèåíò Ãàòî äëÿ ôóíêöèîíàëà Fi∇Fi =nXZTj=1t!∂fj∂fjdτ +mij fji .∂x∂zÄàëåå äëÿ ¾ïîëèíîìèàëüíîãî¿ ôóíêöèîíàëà Pk ñ ó÷¼òîì (2.12)(2.14) èìååìPk (z + αv) = Pk (z) + α`Xaii=1nXmij fjiZTZT0tj=1!∂fj∂fjdτ +, v(t) dt + o(α),∂x∂zo(α)→ 0 ïðè α ↓ 0,α!ZT ZT`nXX∂f∂fjjPk0 (z, v) =aimij fjidτ +, v(t) dt∂x∂zi=1j=10tè ãðàäèåíò Ãàòî∇Pk =`Xi=1ainXZTj=1t21!∂fj∂fjdτ +mij fji .∂x∂z(2.14)Òàêèì îáðàçîì, äëÿ òîãî ÷òîáû âåêòîð-ôóíêöèÿ z ∗ áûëà òî÷êîé ìèíèìóìà ôóíêöèîíàëà Pk ,íåîáõîäèìî [23] âûïîëíåíèå ñîîòíîøåíèé`Xi=1aiZTnXj=1!∂fj∂fjdτ +mij fji = 0n∂x∂z∀t ∈ [0, T ],t`XainX∂fj (x∗ , z ∗ , T )i=1j=1∂z(2.15)mij fji = 0,ãäå âòîðîå ðàâåíñòâî ïðåäñòàâëÿåò ñîáîé óñëîâèå òðàíñâåðñàëüíîñòè íà ïðàâîì êîíöå.Çàìåòèì, ÷òî â ñëó÷àå n = ` = 1, a1 = 1, m11 = 1 ïåðâûé ñîìíîæèòåëü â (2.15) ðàâåí 1,è ïðèõîäèì ê íåîáõîäèìûì óñëîâèÿì ìèíèìóìàZT∂f1∂f1dτ += 0n∂x∂z∀t ∈ [0, T ],(2.16)t∂f1 (x∗ , z ∗ , T )= 0.∂z(2.17)Äèôôåðåíöèðóÿ (2.16) íà èíòåðâàëå [0, T ], ïîëó÷àåì óðàâíåíèå Ýéëåðà â äèôôåðåíöèàëüíîéôîðìå äëÿ êëàññè÷åñêîé çàäà÷è âàðèàöèîííîãî èñ÷èñëåíèÿ.
Âûðàæåíèå (2.17) ïðåäñòàâëÿåòñîáîé óñëîâèå òðàíñâåðñàëüíîñòè íà ïðàâîì êîíöå.2.3Ìåòîä íàèñêîðåéøåãî ñïóñêàÎïèøåì ñëåäóþùèé ìåòîä íàèñêîðåéøåãî ñïóñêà [37] äëÿ ïîèñêà ñòàöèîíàðíûõ òî÷åêôóíêöèîíàëà Pk .Ôèêñèðóåì ïðîèçâîëüíîå z1 ∈ Cn [0, T ]. Ïóñòü óæå ïîñòðîåíî zp ∈ Cn [0, T ]. Åñëè âûïîëíåíî íåîáõîäèìîå óñëîâèå ìèíèìóìà (2.15), òî zp ÿâëÿåòñÿ ñòàöèîíàðíîé òî÷êîé ôóíêöèîíàëà Pk , è ïðîöåññ ïðåêðàùàåòñÿ.
 ïðîòèâíîì ñëó÷àå ïîëîæèìzp+1 = zp + γp qp ,(2.18)ãäå qp = q(t, zp ) ýòî àíòèãðàäèåíò ôóíêöèîíàëà Pk â òî÷êå zp , êîòîðûé íàõîäèòñÿ ïî ôîðìóëåqp = −`Xi=1Tn ZX∂fj∂fj i idτ +mj fj ,ai∂x∂zj=1(2.19)tà γp åñòü ðåøåíèå çàäà÷è îäíîìåðíîé ìèíèìèçàöèèmin P (zp + γqp ) = P (zp + γp qp ).γ>022(2.20)ÒîãäàPk (zp+1 ) 6 Pk (zp ).Ïóñòü ôóíêöèîíàë q ÿâëÿåòñÿ ëèïøèöåâûì ïî z â øàðå ñ öåíòðîì â íóëå è ðàäèóñàr0 > r = sup ||z|| (ìíîæåñòâî Ëåáåãà L0 = {z ∈ Cn [0, T ] | P (z) 6 P (z1 )} ïðåäïîëàãàåòz∈L0ñÿ îãðàíè÷åííûì).
Åñëè ïîñëåäîâàòåëüíîñòü {zp } áåñêîíå÷íà, òî ïðè ýòèõ äîïîëíèòåëüíûõïðåäïîëîæåíèÿõ ìåòîä íàèñêîðåéøåãî ñïóñêà ñõîäèòñÿ [37] â ñëåäóþùåì ñìûñëå:vu TuZu||q(zp )|| = t (qp , qp )dt → 0 ïðè p → ∞.0Åñëè ïîñëåäîâàòåëüíîñòü {zp } êîíå÷íà, òî ïîñëåäíÿÿ å¼ òî÷êà ÿâëÿåòñÿ ñòàöèîíàðíîé òî÷êîéôóíêöèîíàëà Pk ïî ïîñòðîåíèþ.Äëÿ èëëþñòðàöèè ðàáîòû ìåòîäà íàèñêîðåéøåãî ñïóñêà ðàññìîòðèì ïðèìåð.Ïðèìåð 2.3.1.Ïóñòü òðåáóåòñÿ íàéòè ìèíèìóì ôóíêöèîíàëàh Z1 no i22P2 =ẋ (t) + x(t) dt , x(0) = 1.(2.21)0Ïîëîæèì z1 (t) = 0, òîãäà x1 (t) = 1, P2 (z1 ) = 1.  äàííîì ñëó÷àå èç (2.21) èìååìZ1∂fdτ = 1 − t,∂xt∂f= 2z(t)∂zäëÿ âñåõ t ∈ [0, 1]. Ïî ôîðìóëå (2.19) ïîëó÷àåì âûðàæåíèå äëÿ àíòèãðàäèåíòà â òî÷êå z1Z1q1 (t) = −(1 − t)1 dt = (t − 1).0Ïî ôîðìóëå (2.18)z2 (t) = −γ(1 − t).ÒîãäàZtx2 (t) = 1 +1− γ(1 − τ ) dτ = 1 − γt + γt2 .20Ðåøàÿ çàäà÷ó (2.20), íàõîäèìmin P2 (z1 + γq1 ) = minγ>0h ZT nγ>021 2 o i2− γ(1 − t) + 1 − γt + γt dt ,2023îòêóäà γ1 = 12 .
Èìååìòîãäà11z2 (t) = t − ,2211x2 (t) = 1 − t + t2 ,24Z1(2.22)(2.23)∂f (x2 , z2 , t)∂f (x2 , z2 , t)dτ += 0.∂x∂z(2.24)tÈç (2.24) ñëåäóåò, ÷òî â òî÷êå z2 íåîáõîäèìîå óñëîâèå (2.11) ìèíèìóìà âûïîëíåíî. Òàêèìîáðàçîì, ôóíêöèîíàë P2 äîñòèãàåò ìèíèìóìà â òî÷êå z2 , îïðåäåëÿåìîé ñîîòíîøåíèåì (2.22)(à òîãäà x2 âûðàæàåòñÿ ïî ôîðìóëå (2.23)), çäåñü P2 (z2 ) =121.144Îòìåòèì, ÷òî â ýòîì ïðèìåðåìåòîä íàèñêîðåéøåãî ñïóñêà ïðèâ¼ë ê òî÷êå ìèíèìóìà çà îäèí øàã.2.4Ñëó÷àé îãðàíè÷åíèÿ íà ïðàâîì êîíöåÂåðí¼ìñÿ ê èñõîäíîé ïîñòàíîâêå çàäà÷è. Ïóñòü ïîìèìî íà÷àëüíîãî óñëîâèÿ (2.6) çàäàíîîãðàíè÷åíèå íà ïðàâîì êîíöåx(T ) = xT .(2.25)Òðåáóåòñÿ íàéòè òàêóþ âåêòîð-ôóíêöèþ x∗ , óäîâëåòâîðÿþùóþ îãðàíè÷åíèÿì (2.6), (2.25),êîòîðàÿ äîñòàâëÿåò ìèíèìóì ¾ïîëèíîìèàëüíîìó¿ ôóíêöèîíàëó (2.5).Ââåä¼ì ôóíêöèþϕ(z) =nXϕi (z),(2.26)i=1â êîòîðîéϕi (z) = x0i +ZTzi (t)dt − xT i .0Çäåñü x0i i-àÿ êîìïîíåíòà âåêòîðà x0 , à xT i i-àÿ êîìïîíåíòà âåêòîðà xT , i = 1, n.
Íåòðóäíîóáåäèòüñÿ, ÷òî ϕ(z) = 0, êîãäà (2.25) âûïîëíÿåòñÿ, è ϕ(z) > 0, åñëè (2.25) íå èìååò ìåñòà.Òåïåðü ìîæíî ñîñòàâèòü ôóíêöèîíàëΦλ (z) = Pk (z) + λϕ(z),(2.27)ãäå λ äîñòàòî÷íî áîëüøîå ïîëîæèòåëüíîå ÷èñëî. Äàëåå áóäåò ïîêàçàíî, ÷òî ïðè íåêîòîðûõäîïîëíèòåëüíûõ ïðåäïîëîæåíèÿõ ýòî òî÷íàÿ øòðàôíàÿ ôóíêöèÿ. Òîãäà çàäà÷ó ìèíèìèçàöèè (2.5) ïðè íàëè÷èè îãðàíè÷åíèé (2.6), (2.25) ìîæíî ñâåñòè ê áåçóñëîâíîé ìèíèìèçàöèèôóíêöèîíàëà (2.27).242.5Äèôôåðåíöèàëüíûå ñâîéñòâà ôóíêöèîíàëàϕÐàññìîòðèì ôóíêöèîíàë ϕ ïîäðîáíåå.
Îáîçíà÷èìZTzi (t)dt − xT i ,ϕi (z) = x0i +i = 1, n.0Ââåä¼ì èíäåêñíûå ìíîæåñòâàI0 = {i = 1, n | ϕi (z) = 0},I− = {i = 1, n | ϕi (z) < 0},I+ = {i = 1, n | ϕi (z) > 0}.Íàì òàêæå ïîòðåáóþòñÿ ìíîæåñòâàΩ = {z ∈ Cn [0, T ] | ϕ(z) = 0},Ωδ = {z ∈ Cn [0, T ] | ϕ(z) < δ},Ωδ \ Ω = {z ∈ Cn [0, T ] | 0 < ϕ(z) < δ}.Ïóñòü ñíà÷àëà ϕ(z) = 0.
 ýòîì ñëó÷àå ôóíêöèÿ ϕ ñóáäèôôåðåíöèðóåìà, è å¼ ñóáäèôôåðåíöèàë ñ ó÷¼òîì (2.26) èìååò âèä∂ϕ(z) =nnXoωi ei | ωi ∈ [−1, 1], i = 1, n .(2.28)i=1Ïóñòü òåïåðü ϕ(z) > 0.  äàííîì ñëó÷àå ôóíêöèÿ ϕ òàêæå îêàçûâàåòñÿ ñóáäèôôåðåíöèðóåìîé, è å¼ ñóáäèôôåðåíöèàë ñ ó÷¼òîì (2.26) âûðàæàåòñÿ ïî ôîðìóëå∂ϕ(z) =nXi∈I0ωi ei +nXµi ei | ωi ∈ [−1, 1], i ∈ I0 ,i=1oµi = 0, åñëè i ∈ I0 , µi = 1, åñëè i ∈ I+ , µi = −1, åñëè i ∈ I− .Ïóñòü ôóíêöèîíàë Pk ÿâëÿåòñÿ ëèïøèöåâûì íà ìíîæåñòâå Ωδ \ Ω. Åñëè íàéä¼òñÿ òàêîå ïîëîæèòåëüíîå ÷èñëî λ0 < ∞, ÷òî äëÿ âñåõ λ > λ0 ñóùåñòâóåòz(λ) ∈ Cn [0, T ], äëÿ êîòîðîãî Φλ (z(λ)) = inf Φλ (z), òî ôóíêöèîíàë (2.27) áóäåò òî÷z∈C [0,T ]íîé øòðàôíîé ôóíêöèåé.Òåîðåìà 2.5.1.nÄîêàçàòåëüñòâî.
Èñïîëüçóÿ äîñòàòî÷íûå óñëîâèÿ òî÷íîñòè øòðàôíîé ôóíêöèè [23], âèäíî,÷òî äëÿ äîêàçàòåëüñòâà òåîðåìû äîñòàòî÷íî ïîêàçàòü, ÷òî ñóùåñòâóåò òàêîå ÷èñëî a > 0, ÷òîäëÿ ëþáîãî z ∈ Ωδ \ Ω âûïîëíÿåòñÿ ϕ↓ (z) 6 −a.25Ïóñòü v ∈ Pn [0, T ] è ϕi0 (zi0 ) 6= 0 (òàêîé íîìåð i0 ∈ I− ∪ I+ íàéä¼òñÿ, òàê êàê z ∈/ Ω).Âû÷èñëèìZTsign ϕi0 (zi0 ) vi0 (t)dtϕ↓i0 (zi0 ) 6 lim infα↓0ϕi0 (zi0 + αvi0 ) − ϕi0 (zi0 )=sup |zi0 (t) + αvi0 (t) − zi0 (t)|t∈[0,T ]0sup |vi0 (t)|.t∈[0,T ]Ïîëîæèì vi0 = − sign ϕi0 (zi0 ).
Òåïåðü äîñòàòî÷íî â êà÷åñòâå ÷èñëà a âçÿòü T .Òåîðåìà äîêàçàíà.Òåïåðü ìîæíî ñôîðìóëèðîâàòü íåîáõîäèìûå óñëîâèÿ ìèíèìóìà ¾ïîëèíîìèàëüíîãî¿ôóíêöèîíàëà.Òåîðåìà 2.5.2.Ïóñòü âûïîëíåíû óñëîâèÿ Òåîðåìû 2.5.1. Äëÿ òîãî ÷òîáû òî÷êàx∗ (t) = x0 +Ztz ∗ (τ )dτ0óäîâëåòâîðÿëà îãðàíè÷åíèÿì (2.6), (2.25) è òî÷êà z∗ äîñòàâëÿëà ìèíèìóì ôóíêöèîíàëó(2.5), íåîáõîäèìî, ÷òîáû äëÿ âñåõ t èç ïðîìåæóòêà [0, T ] âûïîëíÿëîñü âêëþ÷åíèå0n ∈`Xi=1n ZTnonXX∂fj∂fj i iaidτ +mj fj + λωi ei | ωi ∈ [−1, 1], i = 1, n .∂x∂zj=1i=1(2.29)tÄîêàçàòåëüñòâî.
Ïî Òåîðåìå 2.5.1 ôóíêöèîíàë (2.27) òî÷íàÿ øòðàôíàÿ ôóíêöèÿ, ïîýòîìó ñóùåñòâóåò òàêîå ÷èñëî λ∗ , ÷òî ∀λ > λ∗ çàäà÷à ìèíèìèçàöèè ôóíêöèîíàëà (2.5) ïðèíàëè÷èè îãðàíè÷åíèé (2.6), (2.25) ýêâèâàëåíòíà çàäà÷å áåçóñëîâíîé ìèíèìèçàöèè (2.27). Äëÿòîãî ÷òîáû z ∗ áûëà òî÷êîé ìèíèìóìà (2.27), íåîáõîäèìî [23] âûïîëíåíèå ñîîòíîøåíèÿ0n ∈ ∂Φ(z ∗ ).(2.30)Ïîñêîëüêó ïðè z ∈ Ω ñóáäèôôåðåíöèàë ôóíêöèè ϕ âûðàæàåòñÿ ñîîòíîøåíèåì (2.28), àôóíêöèîíàë Pk äèôôåðåíöèðóåì ïî Ãàòî è åãî ãðàäèåíò âûïèñàí â (2.15), òî óñëîâèå (2.30)çàïèøåòñÿ â âèäå0n ∈`Xi=1nn ZTnXoX∂fj∂fj i iωi ei | ωi ∈ [−1, 1], i = 1, n ,aidτ +mj fj + λ∂x∂zi=1j=1tè âêëþ÷åíèå (2.29) äîêàçàíî.262.6Ìåòîä ãèïîäèôôåðåíöèàëüíîãî ñïóñêàÍàéä¼ì ãèïîäèôôåðåíöèàë ôóíêöèîíàëà Φ. Äëÿ ãèïîäèôôåðåíöèàëà ôóíêöèîíàëîâϕi , i = 1, n, èìååì ñëåäóþùåå âûðàæåíèå [25]:dϕi (z) = co [ϕi (z) − ϕi (z), ei ], [−ϕi (z) − ϕi (z), −ei ] .Òîãäà ãèïîäèôôåðåíöèàë ôóíêöèîíàëà Φ íàõîäèòñÿ ïî ôîðìóëån ZTn`h XXX∂fj∂fj i i idτ +mj fj + λdϕi (z).dΦ(z) = 0,ai∂x∂zj=1i=1i=1(2.31)tÈçâåñòíî, ÷òî íåîáõîäèìûì óñëîâèåì ìèíèìóìà ôóíêöèîíàëà (2.27) â òî÷êå z ∗ â òåðìèíàõãèïîäèôôåðåíöèàëà ÿâëÿåòñÿ óñëîâèå [25](2.32)[0, 0n ] ∈ dΦ(z ∗ ).Ïåðåõîä îò ñóáäèôôåðåíöèàëà ê ãèïîäèôôåðåíöèàëó îáóñëîâëåí òåì ôàêòîì, ÷òî ãèïîäèôôåðåíöèàëüíîå îòîáðàæåíèå (2.31), â îòëè÷èå îò ñóáäèôôåðåíöèàëüíîãî, ÿâëÿåòñÿíåïðåðûâíûì â ìåòðèêå Õàóñäîðôà [25], à ýòî ïîçâîëèò ãàðàíòèðîâàòü ñõîäèìîñòü â íåêîòîðîì ñìûñëå ðàññìàòðèâàåìîãî ÷èñëåííîãî ìåòîäà.Íàéä¼ì ìèíèìàëüíûé ïî íîðìå ãèïîãðàäèåíò h = h(t, z) ∈ dΦ(z), ò.














