Диссертация (1149648), страница 16
Текст из файла (страница 16)
Vol. 14. pp. 321.[87]Demyanov V. F., Stavroulakis G., Polyakova L. N., Panagiotopoulos P. D.Quasidierentiability and nonsmooth modelling in mechanics, engineering and economics.Dordrecht, London: Kluwer Academic Publishers, 1996. 348 p.100[88]Demyanov V. F., Tamasyan G. Sh. Exact penalty functions in isoperimetric problems// Optimization. 2010. Vol.
60. no. 8. pp. 1-25.[89]Evans J. P., Gould F. J., Tolle J. W.Exact Penalty Functions in NonlinearProgramming // Mathematical Programming, 1973. Vol. 4, iss. 1. pp. 7297.[90]Fominyh A. V.The subdierential descent method in the optimal control problem //The XLVI annual international conference on Control Processes and Stability (CPS'15).Abstracts St. Petersburg: Publishing House Fedorova G.V.
2015. Vol. 2(18). pp. 9095.[91]Fominyh A. V., Karelin V. V., Polyakova L. N.Exact Penalties and DierentialInclusions // Electron. J. Di. Equ., vol. 2015 (2015), no. 309, pp. 113.[92]Fominyh A. V.Application of the Hypodierential Descent Method to the Problem ofConstructing an Optimal Control // IEEE 2015 International Conference ¾Stability andControl Processes¿ in Memory of V.I. Zubov (SCP), pp. 560563.[93]Glad T., Polak E. A multiplier method with automatic limitation of penalty growth //Mathematical Programming, 1979. Vol. 17, iss. 1. pp.
140155.[94]Hales Ê. À., Flugge-Lotz I., Lange Â. D. Minimum-fuel attitude control of a spacecraftby an extended method of steepest-descent // Internat. J. Non-Linear Mech., 1968. Vol. 3.no. 4. pp. 413436.[95]Hussu A. The conjugate-gradient method for optimal control problems with undeterminednal time // Internal. J. Control, 1972. Vol. 15. no.
1. pp. 7982.[96]Han S. P., Mangasarian O. L.Exact penalty functions in nonlinear programming //Mathematical Programming, 1979. Vol. 17, iss. 1. pp. 251269.[97]Huyer W., Neumaier A. A New Exact Penalty function // SIAM J. Optim., 2003. Vol. 13,iss. 4. pp. 11411158.[98]Ioe A. D.
Nonsmooth Analysis: dierential calculus of nondierentiable functions // Tran.Amer. Math. Soc. 1981. Vol. 266. no. 1. pp. 155.[99]Ioe A. D., Rockafellar R. T.The Euler and Weierstrass conditions for nonsmoothvariational problems // Calculus of Variations and Partial Dierential Equations.
1996.Vol. 4. no. 1. pp. 5987.101[100]Isayev V. K., Sonin V. V. Survey of methods for the numerical solutions of variationalproblems of ight dynamics // Post Apollo Space Explorat. Part 2. Washington, D. C. Amer.Astronaut. Soc., 1966. pp. 11441171.[101]Kelly H. J. Gradient theory of optimal ight paths // ARS Journal, 1960. Vol.
30. no. 10,pp. 947954.[102]Kelly H. J.Method of gradients // Optimiz. techn. applic. aerospace syst., NewYorkLondon, Acad. Press, 1962, pp. 205254.[103]Kelly H. J., Êîpp R. E., Moyer H. G.Successive approximation techniques fortrajectory optimization. Proc. of the Symp. on Vehicle System Optimization, N. Y., 1961.[104]Kopp R. Å., McGill R. Several trajectory optimization techniques Part I. Discussion //Comput. Methods Optimizat. Problems, New YorkLondon, Acad. Press, 1964, pp. 65-89.[105]Kumar V.A control averaging technique for solving a class of singular optimal controlproblems // Internat.
J: Control. 1976. Vol. 23. no. 3. pp. 361380.[106]Leibniz G. Nova methodus pro maximis et minimis, itemque tangentibus quae nec fractas,nec irrationales quantitates moratur, et singulare pro illis calculi genus // Acta Eruditorum,1684. October issue. s.
467-473 + Tab. xii.[107]Levine M. D. Trajectory optimization using the NewtonRaphson method // Automatica,1966. Vol. 3. no. 34. pp. 203217.[108]Li B., Jun Yu C., Lay Teo K., Ren Duan G. An Exact Penalty Function Method forContinuous Inequality Constrained Optimal Control Problem // J. Optim.
Theory Appl.2011. Vol. 151. no. 1. pp. 260291.[109]Lusty A. H., Miele A.Bodies of Maximum Lift-to-Drag Ratio in Hypersonic Flow //AIAA Journal. 1966. Vol. 4. no. 12. pp. 21302135.[110]McGill R.Optimal control, inequality state constraints and the generalized NewtonRaphson algorithm // J. Soc. Industr. and Appl. Math., 1965. A3. no. 2. pp. 1291298.[111]Miele A. Drag Minimization as the Extremization of Products of Powers of Integrals //Rice University, Aero-Astronautics Report 31, 1967.
31 p.[112]Miele A. The Extremization of Products of Powers of Functionals and Its Application toAerodynamics // Astronautica Acta. 1966. Vol. 12. no. 1. pp. 141.102[113]Miele A., Hull D. G.On the Minimization of the Product of the Powers of SeveralIntegrals // J. Optim. Theory Appl. 1967. Vol. 1. no. 1. pp.
7082.[114]Mitter S. K.Successive approximation methods for the solution of optimal controlproblems // Automatica, 1966. Vol. 3. no. 3. pp. 136149.[115]Newton Is. Tractatus de quadratura curvarum. Uppsala, 1762. 112 s.[116]Di Pillo G., Facchinei F.Exact Barrier Function Methods for Lipschitz Programs //Appl. Math. Optim., 1995. Vol. 32, iss. 1. pp. 131.[117]Di Pillo, G., Grippo L.
On the Exactness of a Class of Nondierentiable Penalty Functions// J. Optim. Theory Appl., 1988. Vol. 57, iss. 3. pp. 399410.[118]Di Pillo, G., Grippo L. Exact Penalty Functions in Constrained Optimization // SIAMJ. Control Optim., 1989. Vol. 27. pp. 13331360.[119]Polyakova L.Quasidierentiable optimization: Exact penalty methods // Encyclopediaof optimization / Ed. C. A. Floudas, P. M.
Pardalos. Doordrecht: Kluwer Academic Publ.2001. Vol. 4. pp. 478483.[120]Polyakova L. N., Stavroulakis G. E.Dierence convex optimization techniques innonsmooth computational mechanics // Optimization Methods & Software. 1996. Vol. 7.pp. 5781.[121]Sidar M. An iterative algorithm for optimum control problems // Internal J. NonLinearMech., 1968.
Vol. 3. no. 1. pp. 16.[122]Tripathi S. S., Narendra Ê. S. Optimization using conjugate gradient methods // IEEETrans. Automat. Control, 1970. Vol. 15. no. 2. pp. 268270.[123]Truemper K. Note on Finite Convergence of Exterior Penalty Functions // Mgt. Sci., 1975.Vol. 21. no.
5. pp. 600606.[124]Wang C., Ma C., Zhou J.A New Class of Exact Penalty Functions and PenaltyAlgorithms // J. Glob. Optim., 2014. Vol. 58, iss. 1. pp. 5173.[125]Zangwill W. I. Non-Linear Programming Via Penalty Functions // Mgt. Sci., 1967. Vol. 13.no.
5. pp. 344358.103.















