Диссертация (1149516), страница 15
Текст из файла (страница 15)
Chen, W. Yang,W. X. Zheng // Automatica. — 2015. — Vol. 61. — P. 232–240.28. Churilov, A. An impulse-to-impulse discrete-time mapping for a time-delay impulsive system /A. Churilov, A. Medvedev // Automatica. — 2014. — Vol. 50, no. 8. — P. 2187–2190.29. Churilov, A. Finite-dimensional reducibility of time-delay systems under pulse-modulated feedback / A. Churilov, A.
Medvedev, P. Mattsson // Proceedings of the 52nd IEEE Conference onDecision and Control. — Florence, Italy, 2013. — December 10–13. — P. 2078–2083.30. Churilov, A. Periodical solutions in a pulse-modulated model of endocrine regulation with timedelay / A. Churilov, A. Medvedev, P. Mattsson // IEEE Transactions on Automatic Control.
—2014. — Vol. 59, no. 3. — P. 728–733.31. Churilov, A. Mathematical model of non-basal testosterone regulation in the male by pulsemodulated feedback / A. Churilov, A. Medvedev, A. Shepeljavyi // Automatica. — 2009. — Vol. 45,no. 1. — P. 78–85.32. Churilov, A. A state observer for continuous oscillating systems under intrinsic pulse-modulatedfeedback / A. Churilov, A. Medvedev, A. Shepeljavyi // Automatica.
— 2012. — Vol. 45, no. 6. —P. 1117–1122.33. Clark, J. P. C. The stability of pulse frequency modulated closed loop control systems /J. P. C. Clark, E. Noges // IEEE International Convention Record. — 1966. — Vol. 14, no. 6. —P. 179–185.34. Cox, N.
High-gain observers and linear output regulation for hybrid exosystems / N. Cox,L. Marconi, A. Teel // International Journal of Robust and Nonlinear Control. — 2014. — Vol. 24,no. 6. — P. 1043–1063.10135. Di Bernardo, M. Self-oscillations and sliding in relay feedback systems: symmetry and bifurcations / M. Di Bernardo, K. H. Johansson, F. Vasca // International Journal of Bifurcation andChaos. — 2001. — Vol. 11, no. 04. — P. 1121–1140.36. An embedding approach for the design of state-feedback tracking controllers for references withjumps / R. G. Sanfelice, J. J. B.
Biemond, N. van de Wouw, W. P. M. H. Heemels // InternationalJournal of Robust and Nonlinear Control. — 2013. — Vol. 24, no. 11. — P. 1585–1608.37. Emergent oscillations in mathematical model of the human menstrual cycle / N. L. Rasgon,L. Pumphrey, P. Prolo et al. // CNS Spectrums. — 2003. — Vol. 8. — P. 805–814.38. Encoding and decoding mechanisms of pulsatile hormone secretion / J. J.
Walker, J. R. Terry,K. Tsaneva-Atanasova et al. // Journal of Neuroendocrinoly. — 2009. — Vol. 22, no. 12. — P. 1226–1238.39. Evans, W. S. Biomathematical modeling of pulsatile hormone secretion: a historical perspective /W. S. Evans, L. S. Farhy, M. L. Johnson // Methods in Enzymology: Computer Methods, VolumeA / Ed. by M. L Johnson, L. Brand. — 2009.
— Vol. 454. — P. 345–366.40. Farhy, L. S. Modeling of oscillations in endocrine networks with feedback / L. S. Farhy // Methodsin Enzymology. — 2004. — Vol. 384. — P. 54–81.41. Forni, F. Follow the bouncing ball: global results on tracking and state estimation with impacts /F. Forni, A. R. Teel, L. Zaccarian // IEEE Transactions on Automatic Control. — 2013. — June. —Vol.
58, no. 6. — P. 1470–1485.42. Gelig, A. K. Stability and Oscillations of Nonlinear Pulse-Modulated Systems / A. Kh. Gelig,A. N. Churilov. — Boston, Basel, Berlin: Birkhäuser, 1998.43. Goodwin, B. C. An intrainment model for timed enzyme synthesis in bacteria / B. C. Goodwin //Advances in Enzyme Regulation. — 1965. — Vol. 3. — P. 425–437.44. Goodwin, B. C. Oscillatory behavior in enzymatic control processes / B. C.
Goodwin // Nature. —1966. — Vol. 209, no. 5022. — P. 479–481.45. The Goodwin oscillator: on the importance of degradation reactions in the circadian clock /P. Ruoff, M. Vinsjevik, C. Monnerjahn, L. Rensing // Journal of Biological Rhythms. — 1999. —Vol. 14, no. 6.
— P. 469–479.10246. Griffith, J. S. Mathematics of cellular control processes i. negative feedback to one gene /J. S. Griffith // Journal of Theoretical Biology. — 1968. — Vol. 20, no. 2. — P. 202–208.47. Guan, Z.-H. On hybrid impulsive and switching systems and application to nonlinear control /Z.-H. Guan, D. J. Hill, X. Shen // IEEE Transactions on Automatic Control. — 2005.
— Vol. 50,no. 7. — P. 1058–1062.48. Haddad, W. M. Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control /W. M. Haddad, V. Chellaboina, S. G. Nersesov. — Princeton: Princeton Univ. Press, 2006.49. Hale, J. K. Dynamics and Bifurcations / J. K. Hale, H. Kocak. — Springer–Verlag New York, 1991.50. Henningsson, T.
Sporadic event-based control of first-order linear stochastic systems /T. Henningsson, E. Johannesson, A. Cervin // Automatica. — 2008. — Vol. 44, no. 11. — P. 2890–2895.51. Heuett, W. J. A stochastic model of oscillatory blood testosterone levels / W. J. Heuett,H. A. Qian // Bulletin of Mathematical Biology. — 2006.
— Vol. 68. — P. 1383–1399.52. Hohberger, C. C. Self-oscillation of micromechanical resonators / C. C. Hohberger, K. Karrai //Proceedings of 4th IEEE Conference on Nanotechnology. — 2004. — P. 419–421.53. Kailath, T. Linear Systems / T. Kailath. — Englewood Cliffs, NJ: Prentice–Hall, 1980. — P. 214–216.54. Keenan, D. M. Non-invasive analytical estimation of endogenous GnRH drive: analysis usinggraded competitive GnRH-receptor antagonism and a calibrating pulse of exogenous GnRH /D.
M. Keenan, I. J. Clarke, J. D. Veldhuis // Endocrinology. — 2011. — Vol. 152, no. 12. — P. 4882–4893.55. Keenan, D. M. A biomathematical model of time-delayed feedback in the human malehypothalamic-pituitary-Leydig cell axis / D. M. Keenan, J. D. Veldhuis // American Journal ofPhysiology. Endocrinology and Metabolism.
— 1998. — Vol. 275, no. 1. — P. E157–E176.56. Kharitonov, V. L. Time-Delay Systems. Luapunov Functions and Matrices / V. L. Kharitonov. —Birkhauser, 2013.57. Kuntsevich, V. M. Fundamentals of non-linear control systems with pulse-frequency and pulsewidth modulation / V. M. Kuntsevich, Yu. N.
Chekhovoi // Automatica. — 1971. — Vol. 7, no. 1. —P. 73–81.10358. Kuznetsov, Y. Elements of Applied Bifurcation Theory / Yu. Kuznetsov. — Springer–Verlag NewYork, 2004.59. Lakshmikantham, V. Theory of Impulsive Differential Equations / V. Lakshmikantham,D. D. Bainov, P. S. Simeonov. — Singapore: World Scientific, 1989.60. Leine, R. Stability and Convergence of Mechanical Systems with Unilateral Constraints /R. Leine, N. Van de Wouw. — Springer Science & Business Media, 2007. — Vol. 36.61. Li, Y. Oscillations and multiscale dynamics in a closed chemical reaction system: Second lawof thermodynamics and temporal complexity / Y. Li, H.
Qian, Y. Yi // The Journal of ChemicalPhysics. — 2008. — Vol. 129, no. 15. — P. 154505–154505–9.62. Liberzon, D. Switching in Systems and Control, ser. Systems & Control: Foundations &Applications / D. Liberzon. — Boston: Birkhäuser, 2003.63. Lillo, C. Nutrient depletion as a key factor for manipulating gene expression and productformation in different branches of the flavonoid pathway / C. Lillo, U. S.
Lea, P. Ruoff // Plant,Cell & Environment. — 2008. — Vol. 31, no. 5.64. Liu, B. Comparison principle and stability of discrete-time impulsive hybrid systems / B. Liu,D. J. Hill // IEEE Transactions on Circuits and Systems I: Regular Papers. — 2009. — Vol. 56,no. 1. — P. 233–245.65. Liu, K. Networked control with stochastic scheduling / K. Liu, E. Fridman, K. H.
Johansson //IEEE Transactions on Automatic Control. — 2015. — Vol. 60, no. 11. — P. 3071–3076.66. Mattsson, P. Modeling of testosterone regulation by pulse-modulated feedback: an experimentaldata study / P. Mattsson, A. Medvedev // Proceedings of 2013 International Symposium on Computational Models forLife Sciences. — Vol. 1559. — Melville, New York: AIP Publishing, 2013. —P. 333–342.67. Mattsson, P. Modeling of testosterone regulation by pulse-modulated feedback / P. Mattsson,A. Medvedev // Advances in Experimental Medicine and Biology: Signal and Image Analysisfor Biomedical and Life Sciences.
— Springer, 2015. — Vol. 823. — P. 23–40.68. Matveev, A. S. Qualitative Theory of Hybrid Dynamical Systems / A. S. Matveev, A. V. Savkin. —Springer Science & Business Media, 2012.10469. Menini, L. Asymptotic tracking of periodic trajectories for a simple mechanical system subjectto nonsmooth impacts / L.















