Диссертация (1145858), страница 38
Текст из файла (страница 38)
– P.361–371.280. Putkinen A., Larmola T., Tuomivirta T., Siljanen H., Bodrossy L., Tuittila E. Water dispersalof methanotrophic bacteria main tainsfunctional methaneoxidation in Sphagnum mosses //Front. Microbiol. – 2012. – Vol.3:15. – doi: 10.3389/fmicb.2012.00015.281. Raaijmakers J.M., de Bruijn I., Nybroe O., Ongena M. Natural functions of lipopeptidesfromBacillusandPseudomonas: More than surfactants and antibiotics // FEMS Microbiol.Rev.
– 2010. – No.34. – P.1037–1062.282. Rabatin S.C. The occurrence of the vesicular–arbuscular mycorhizal fungusGlomustenuiswith moss // Mycologia. – 1980. – No.72. – P.191–195.283. Rabinovich M.L., Melnick M.S., Bolobova A.V. The structure and mechanism of action ofcellulolytic enzymes // Biochemistry. – 2002. – No.67.
– P.850–871.284. Raghoebarsing A.A., Smolders A.J.P., Schmid M.C.,Rijpstra W.I.C., Wolters–Arts M.,Derksen J.M. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. //Nature. – 2005. – Vol.436. – P.1153–1156.285. Raghoebarsing A.A., Pol A., van de Pas–Schoonen K.T., Smolders A.J., Ettwig K.F., RijpstraW.I., Schouten S., Damsté J.S., Op den Camp H.J., Jetten M.S., Strous M. A microbial165286.287.288.289.290.291.292.293.294.295.296.297.298.299.300.301.302.consortium couples anaerobic methane oxidation to denitrification // Nature. – 2006. –No.7086. – P.918–921.Rai A.N., Söderback E. Bergman B.
Cyanobacterium–plant symbioses // New Phytol. – 2000.– No.147. – P.449–481.Ramos Solano B., Barriuso Maicas J., Pereyra de la Iglesia M.T., Domenech J., GutierrezManero F.J. Systemic disease protection elicited by plant growth promoting rhi– zobacteriastrains: relationship between metabolic responses, systemic disease protection, and bioticelicitors // Phytopathology. – 2008. – No.98. – P.451–457.Rappe M.S., Giovannoni S.J. The uncultured microbial majority // Annu. Rev. Microbiol.
–2003 – No.57. – P.369–394.Raskin L., Stromley J.M., Rittmann B.E., Stahl D.A. Group–specific 16S rRNA hybridizationprobes to describe natural communities of methanogens // Appl. Environ. Microbiol. – 1994– No.60. – P.1232–1240.Rawat R.,Tewari L. Effect of abiotic stress on phosphate solubilization by biocontrol fungusTrichoderma sp. // Curr. Microbiol.
– 2011. – Vol.62. – No.5. – P.1521–1526.Rayner M.C. Mycorrhiza / London: Wheldon and Wesley, 1927. – 134 p.Reeve J.N., Nölling J., Morgan R.M., Smith D.R. Methanogenesis: genes, genomes, andwho's on first? // J. Bacteriol. – 1997. – No.179. – P.5975–5986.Rennie R.J, Freitas J.R.D, Ruschel A.P, Vose P.B. Isolation and identification of N2– fixingbacteria associated with sugarcane (Saccharum sp.). // Can J Microbiol. – 1982. – Vol. 28. –P.462–467.Rheims H., Schumann P., Rohde M., Stackebrandt E. Verrucosispora gifhornensis gen. nov.,sp. nov., a new member of the actinobacterial family Micromonosporaceae // Int. J.
Syst.Evol. Microbiol. – 1998. – No.48. – P.1119–1127.Ribaudo C., Krumpholz E., Cassan F., Bottini R., Cantore M., Cura A. Azospirillum sp.promotes root hair development in tomato plants through a mechanism that involvesethylene // J. Plant. Growth Regul. – 2006. – No.24. – P.175–185.Richardson A.E. Soil microorganisms and phosphorus availability. In: Soil Biota / PankhurstC.E., Doube B.M., GruptaV.V.S.R., Grace P.R., (eds.). – Melbourne, Australia: CSIRO,1994. – P.50–62.Rijavec T., Lapanje A. Rupnik M. Isolation of bacterial endophytes from germinated maizekernels // Can. J. Microbiol.
– 2007. – Vol.53. – P.802–808.Riley M. Molecular mechanisms of colicin evolution // Mol. Biol. Evol. – 1993. – No.10. –P.1380–1395.Riley M.A., Wertz J.E. Bacteriocins: evolution, ecology, and application // Annu. Rev.Microbiol. – 2002. – No.56. – P.117–137.Rodriguez H., Fraga R. Phosphate solubilizing bacteria and their role in plant growthpromotion // Biotechnol. Adv. – 1999. – No.17. – P.319–339.Rodriguez H., Fraga R. Phosphate solubilizing bacteria and their role in plant growthpromotion // Biotechnol.
Adv. – 1999. – No.17. – P.319–339.Rooney–Varga J.N., Giewat M.W., Duddleston K.N., Chanton J.P., Hines M.E. Linksbetween archaeal community structure, vegetation type and methanogenic pathway inAlaskan peatlands // FEMS Microbiol. Ecol. – 2007. – No.60. – P.240–251.166303.
Russell J., Bulman S. The liverwort Marchantia foliace a forms a specialized symbiosis witharbuscular mycorrhizal fungi in the genus Glomus // New Phytol. – 2005. – No.165. –P.567–579.304. Ryals J.A., Neuenschwander U.H., Willits M.G., Molina A., Steiner H.–Y., Hunt M.D.Systemic acquired resistance // Plant Cell. – 1996. – No.8.
– P.1808–1819.305. Rydin H., Jeglum J.K., Hooijer A. The Biology of Peatlands / Oxford: University Press, 2006.– 343 p.306. Ryu C.M., Farag M.A. Bacterial volatiles promote growth in Arabidopsis // Proc. Natl. Acad.Sci. USA. – 2003. – No.100. – P.4927–4932.307. Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Wei H.X., Kloepper J.W. Bacterial volatilesinduce systemic resistance in Arabidopsis // Plant Physiol. – 2004.
– No.134. – P.1017–1026.308. Sagoe C.I., Ando T., Kouno K., Nagaoka T. Relative importance of protons and solutioncalcium concentration in phosphate rock dissolution by organic acids // Soil Sci. Plant Nutr.– 1998. – No.44. – P.617–625.309. Salkowski E. Ueber das Verhalten der Skatolcarbonsaureim Organismus // Z. Physiol. Chem.– 1885.
– No.9. – P.23–33.310. Sambrook J., Rassell D.W. Molecular cloning: a laboratory manual. 3rd edition / New York:Cold Spring Harbor Laboratory, 2001. – 2344 p.311. Saravanakumar D., Samiyappan R. ACC deaminase fromPseudomonas fluorescens mediatedsaline resistance in groundnut (Arachis hypogea) plants // J.
Appl. Microbiol. – 2007. –Vol.102. – No.5. – P.1283–1292.312. Scervino J.M., Papinutti V.L., Godoy M.S., Rodriguez M.A., Della Monica I., Recchi M.,Pettinari M.J., Godeas A.M. Medium pH, carbon and nitrogen concentrations modulate thephosphate solubilization efficiency of Penicillium purpurogenum through organic acidproduction // J. Appl. Microbiol. – 2011. – Vol.110. – No.5. – P.1215–1223.313. Scheirer D.C., Brasell H.M.
Epifluorescence microscopy for the study of nitrogen fixingblue–green algae associated with Funaria hygrometrica (Bryophyta) // Am. J. Bot. – 1984. –No.71. – P.461–465.314. Scheirer D.C., Dolan H.A. Bryophyte leafe epiflora: An SEM and TEM study of Polytrichumcommune Hedw.
// Am. J. Bot. – 1983. – No.70. – P.712–718.315. Schippers B. Biological control of pathogens with rhizobacteria // Philos. Trans. R. Soc. B.–Biol. Sci. – 1988. – No.318. – P.283–293.316. Schippers B., Bakker A.W., Bakker P.A.H.M. Interaction of deleterious and beneficialrhizosphere microorganisms and the effect of cropping practices // Annu. Rev. Phytopathol.– 1987. – No.25. – P.339–358.317. Schippers B., Scheffer R.J., Lugtenberg B.J.J., Weisbeek P.J. Biocoating of seeds with plantgrowth– promoting rhizobacteria to improve plant establishment // Outlook Ahric. – 1995.
–No.25. – P.179–185.318. Schleper C., Jurgens G., Jonuscheit M. Genomic studies of uncultivated archaea // Nat. Rev.Microbiol. – 2005. – No.3. – P.479–488.319. Schloss P.D., Hay A.G., Wilson D.B., Gossett J.M., Walker L.P. Quantifying bacterialpopulation dynamics in compost using 16S rRNA gene probes // Appl. Microbiol.Biotechnol. – 2005. – No.66. – P.457–463.167320. Schulz B., Boyle C. What are endophytes? In: Microbial Root Endophytes / Boyle C.J.C.,Sieber T.N., eds.). – 2006. – P.1–13.321. Schüßler A Glomus clarioideumforms an arbuscular mycorrhiza–like symbiosis with thehornwort Anthoceros punctatus // Mycorrhiza.
– 2000. – No.10. – P.15–21.322. Shigematsu T., Tang Y., Kobayashi T., Kawaguchi H., Morimura S., Kida K. Effect ofdilution rate on metabolic pathway shift between aceticlastic and nonaceticlasticmethanogenesis in chemostat cultivation // Appl. Environ. Microbiol.
– 2004. – No.70. –P.4048–4052.323. Shoseyov O., Shani Z., Levy I. Carbohydrate binding modules: biochemical properties andnovel applications // Microbiol. Mol. Biol. Rev. – 2006. – No.70. – P.283–295.324. Silo–Suh L.A., Lethbridge B.J., Raffel S.J., He H., Clardy J., Handelsman J. Biologicalactivities of two fungistatic antibiotics produced by Bacillus cereus UW85 // Appl.
Environ.Microbiol. – 1994. – No.60. – No.2023–2030.325. Simankova M.V., Parshina S.N., Tourova T.P., Kolganova T.V., Zehnder A.J.B.,Nozhevnikova A.N. Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenicarchaeon fromanoxic lake sediments // Syst. Appl. Microbiol. – 2001. – No.24.
– P.362–367.326. Sizova M.V., Panikov N.S., Tourova T.P., Flanagan P.W. Isolation and characterization ofoligotrophic acido–tolerant methanogenic consortia from a Sphagnum peat bog // FEMSMicrobiol. Ecol. – 2003. – No.45. – P.301–315.327. Sizova M.V., Panikov N.S., Spiridonova E.M., Slobodova N.V., Tourova T.P. Novelfacultative anaerobic acidotolerant Telmatospirillum sibiriensegen. nov. sp.
nov. isolatedfrom mesotrophic fen // Syst. Appl. Microbiol. – 2007. – No.30. – P.213–220.328. Sizova M.V., Panikov N.S., Tourova T.P., Flanagan P.W. Isolation and characterizatioт ofoligotrophic acidotolerant methanogenic consortia from a Sphagnum peat bog // FEMSMicrobiol. Ecol.
– 2003. – 45. – P.301–315.329. Sjörs H., On the relation between vegetation and electrolytes in north Swedish mire waters //Oikos. – 1950. – No.2. – P.241–259.330. Slobodkin A.I., Zavarzin G.A. Methane production in halophilic cyanobacteria mats inlagoons of Lake Sivash // Mikrobiologiya. – 1992. – No.61.
– P198–201.331. Smith V.R. Effects of abiotic factors on acetylene reduction by cyanobacteria epiphytic onmoss at a subarctic island // Appl. Environ. Microbiol. – 1984. – No.48. – P.594–600.332. Sohngen N.L. Uber bakterien, welche methan ab kohlenstoffnahrung and energiequellegebrauchen // Parasitenkd. Infectionskr. Abt. – 1906. – No.2.15. – P.513–517.333. Solheim B., Johanson U., Callaghan T.V., Lee J.A., Gwynn–Jones Björn L.O.