Диссертация (1145858), страница 36
Текст из файла (страница 36)
Exp. Bot. – 2001. – No. 52. –P.747–760.188. Jordan D.C., McNicol P.J., Marshall M.R. Biological nitrogen fixation in the terrestrialenvironment of a high Arctic ecosystem (Truelove Lowland, Devon Island, N.W.T.) // Can.J. Microbiol. – 1978. – No.24. – P.643– 649.189. Juottonen H. Archaea, bacteria, and methane production along environmental gradients infens and bogs / Academic Dissertation in General Microbiology. – Helsinki, 2008. – 48 pp.190.
Juottonen H., Galand P., Tuittila E.S.,Laine J., Fritze H., Yrjälä K. Methanogen communitiesand bacteria along an ecohydrological gradient inanorthern raisedbog // Environ. Microbiol.– 2005. – No.7. P.1547–1557.191. Kachalkin A.V., Glushakova A.M., Yurkov A.M., Chernov I.Yu. Characterization of yeastgroupings in the phyllosphere of Sphagnum mosses // Microbiology. – 2008. – Vol.
77. –No.4. – P.474–481.192. Kamilova F., Validov S., Azarova T., Mulders I., Lugtenberg B. Enrichment for enhancedcompetitive plant root tip colonizers selects for a new class of biocontrol bacteria // Environ.Microbiol. – 2005. – No.7. – P.1809–1817.193. Kandler O., König H. Cell wall polymers in Archaea (Archaebacteria) // Cell Mol.
Life Sci. –1998. – No.54. – P.305–308.194. Kanokratana P., Uengwetwanit T., Rattanachomsri U., Bunterngsook B., Nimchua T.,Tangphatsornruang S., Plengvidhya V., Champreda V., Eurwilaichitr L. Insights into thephylogeny and metabolic potential of a primary tropical peat swamp forest microbialcommunity by metagenomic analysis // Microb. Ecol. – 2011. – No.61. – P.
518–528.195. Karlidag H., Esitken A., Turan M., Sahin F. Effects of root inoculation of plant growthpromoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves ofapple // Sci. Hort. – 2007. – Vol.114. – No.1. – P.16–20.159196. Kasana R., Salwan R., Dhar H., Dutt S., Gulati A. A rapid and easy method for the detectionof microbial cellulases on agar plates using gram’s iodine.
// Current microbiology. – 2008.– Vol. 57. – No.5. – P.503–507.197. Kazda J. Mycobacterium sphagni sp. nov. // Int. J. Syst. Bacteriol. – 1980. – No.30. – P.77–81.198. Kazda J., Müller K. Mycobacterium komossense sp. nov. // Int. J. Syst. Bacteriol. – 1979. –No.29. – P.361–365.199. Kelley A.P. Mycotrophy in plants / Waltham, MA: Chronica Botanica, 1950. – 223 pp.200. Khalid A., Arshad M., Zahir Z.A.
Screening plant growth promoting rhizobacteria forimproving growth and yield of wheat // J. Appl. Microbiol. – 2004. – Vol. 96. – No.3. –P.473–480.201. Khan M.S., Zaidi A., Wani P.A. Role of phosphate–solubilizing microorganisms insustainable agriculture – a review // Agron. Sustain. Develop. – 2007. – No.27. – P.29–43202. King G.M. Ecological aspects of methane oxidation, a key determinant of global methanedynamics // Adv. Microb. Ecol. – 1992. – No.12.
– P.432–468.203. Kip N., Ouyang W., van Winden J., Raghoebarsing A., van Niftrik L., Pol A., Pan Y.,Bodrossy L., van Donselaar E.G., Reichart G.J., Jetten M.S., Damsté J.S., Op den Camp H.J.Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnummosses // Appl. Environ. Microbiol. – 2011a. – Vol.77. – No.16. – P.5643– 5654.204. Kip N., Dutilh B.E., Pan Y., Bodrossy L., Neveling K., Kwint M.P., Jetten, M.S.M., and Opden Camp H.J.M. Ultradeep pyrosequencing of pmoA amplicons confirms the prevalence ofMethylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog // Environ.Microbiol.
Rep. – 2011b. – No.3. – P.667–673.205. Kip N., van Winden J.F., Pan Y., Bodrossy L., Reichart,G., Smolders A.J.P., Jetten M.S.M.,Sinninghe Damste J.S., Op den Camp H.J.M. Global prevalence of symbiotic bacterialmethane oxidation in peat moss ecosystems // Nat. Geosci. – 2010. – No.3. – P.617–621.206. Klenk H.P., Clayton R.A., Tomb J.F., White O., Nelson K.E., Ketchum K.A.
The completegenome sequence of the hyperthermophilic, sulphate reducing archaeon Archaeoglobusfulgidus // Nature. – 1997. – No.390. – P.364–370.207. Kloepper J.W., Leong J., Teintz M., Schroth M.N. Enhanced plant growth by siderophoresproduced by plant growth– promoting rhizobacteria // Nature. – 1980a. – Vol. 286. – P.665.208. Kloepper J.W., GutierrezEstrada A., Mclnroy J.A. Photoperiod regulates elicitation of growthpromotion but not induced resistance by plant growth–promoting rhizobacteria // Can.
J.Microbiol. – 2007. – Vol.53. – No.2. – P.159–167.209. Kloepper J.W., Leong J., Teintze M., Schroth M.N. Pseudomonas siderophores: a mechanismexplaining disease–suppressive soils // Curr. Microbiol. – 1980b. – No.4. – P.317– 320.210. Kloepper J.W., Lifshitz K., Schroth M.N. Pseudomonas inoculants to benefit plant production// ISI Atlas Sci.
Anim. Plant. Sci. – 1988. – P.60–64.211. Kloepper J.W., Ryu C.M., Zhang S.A. Induced systemic resistance and promotion of plantgrowth by Bacillus spp. // Phytopathology. – 2004. – No.94. – P.1259–1266.212. Kloepper J.W., Schroth M.N. Plant growth–promoting rhizobacteria on radishes.
In:Proceedings of the 4th international conference on plant pathogenic bacteria / Gilbert–Clarey, Tours, 1978. – P.879–882.160213. Kobayashi Y., Shinkai T., Koike S. Ecological and physiological characterization shows thatFibrobacter succinogenesis important in rumen fiber digestion // Folia Microbiol. – 2008. –No.53. – P.195–200.214. Koizumi Y., Takii S., Fukui M. Depth–related change in archaeal community structure in afresh water lake sediment as determined with denaturing gradient gel electrophoresis ofamplified 16S rRNA genes and reversely transcribed rRNA fragments // FEMS MicrobiolEcol. – 2004.
– No.48. – P.285–292.215. Kokalis–Burelle N., Kloepper J.W., Reddy M.S. Plant growth–promoting rhizobacteria astrans plant amendments and their effects on indigenous rhizosphere microorganisms // Appl.Soil Ecol. – 2005. – No.31. – P.91–100.216. Kotsyurbenko O.R., Friedrich M.W., Simankova M.V., Nozhevnikova A.N., Golyshin P.N.,Timmis K.N., Conrad R. Shift from acetoclastic to H2–dependent methanogenesis in a westSiberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain// Appl.
Environ. Microbiol. – 2007. – No.73. – P.2344–2348.217. Kotsyurbenko O.R. Trophic interactions in the methanogenic microbial community of low–temperature terrestrial ecosystems // FEMS Microbiol. Ecol. – 2005. – No.53. – P.3–13.218. Kotsyurbenko O.R., Chin K.J., Glagolev M.V., Stubner S., Simankova M.V., NozhevnikovaA.N., Conrad R. Acetoclastic and hydrogenotrophic methane production and methanogenicpopulations in an acidic West–Siberian peat bog // Environ. Microbiol. – 2004.
– P.1159–1173.219. Krechel A., Faupel A., Hallmann J., Ulrich A., Berg G. Potato–associated bacteria and theirantagonistic potential towards plant– pathogenic fungi and the plant–parasitic nematodeMeloidogyne incognita (Kofoid & White) // Can. J. Microbiol. – 2002. – V.48. – P.772–786.220. Kuiper I., Lagendijk E.L., Bloemberg G.V., Lugtenberg B.J. Rhizoremediation: a beneficialplant– microbe interaction // Mol.
Plant. Microbe. Interact. – 2004. Vol.17. No.1. P.6–15.221. Kulichevskaya I.S., Guzev V.S., Gorlenko V.M., Liesack W., Dedysh S. N. Rhodoblastussphagnicola sp. nov., a novel acidophilic purple non–sulfur bacterium from Sphagnum peatbog // Int. J. Syst. Evol. Microbiol. – 2006. – No.56. – P.1397–1402.222. Kulichevskaya I.S., Baulina O.I., Bodelier P.L.E., Rijpstra W.I.C, Sinninghe Damste G.S.,Dedysh S.N.
Zavarzinella formosa gen. nov., sp. nov., a novel stalked,Gemmatalikeplanctomycete from a siberian peat bog // Int. J. Syst. Evol. Microbiol. – 2009. – No.59. –P.357–364.223. Kumar V, Aggarwal N.K., Singh B.P. Performance and persistence of phosphate solubilizingAzotobacter chroococcum in wheat rhizosphere // Folia Microbiol. – 2000.
– Vol.45. – No.4.– P.343–347.224. Kurr M., Huber R., König H., Jannasch H.W., Fricke H., Trincone A. Methanopyrus kandleri,gen. nov. and sp. nov. represents a novel group of hyperthermophilic methanogens, growingat 110°C // Arch. Microbiol. – 1991. – No.156. – P.239–247.225. Laine J., Vasander H.
Ecology and vegetation gradients of peatlands. In: Peatlands in Finland/ Vasander H. (ed.) – Helsinki: Finnish Peatland Society, 1996. – P.10–19.226. Larmola T., Tuittila E.S., Tiirola M., Nykanen H., Martikainen P.J., Yrjala K., Tuomivirta T.,Fritze H. The role of Sphagnum mosses in the methane cycling of a boreal mire // Ecology.– 2010. – No.91. P.2356–2365.161227. Li L.L., McCorkle S.R., Monchy S., Taghavi S., van der Lelie D.: Bioprospectingmetagenomes: glycosylhydrolases for converting biomass // Biotechnol. Biofuels.
– 2009. –No.18. –P.2–10.228. Lidstrom M. E. The aerobic methylotrophic bacteria. In: The prokaryotes / Balows A., TruperH.G., Dworkin M., Harder W., Schleifer K.H. (ed.). – New York: Springer–Verlag, 1991. –P.431–445.229. Lifshitz R., Kloepper J.W., Kozlowski M., Simonson C., Carlson J., Tipping E.M., Zalesca I.Growth promotion of canola (rapeseed) seedlings by a strain of Psedomonas putida undergnotobiotic conditions // Can. J.
Microbiol. – 1987. – No.33. – P.390–395.230. Lindow S.E., Brandl M.T. Microbiology of the phyllosphere // Appl. Environ. Microbiol. –2003. – No.69. – P.1875–1883.231. Liu W., He Y., Zhang K.,Fan J.,Cao H. Isolation, identification and characterization of astrain of phosphate–solubilizing bacteria from red soil // Wei Sheng Wu Xue Bao. – 2012. –Vol.52. – No.3. – P.326–333.232. Lloyd D, Thomas K.L., Hayes A., Hill B., Hales B.A., Edwards C. Micro–ecology of peat:Minimally invasive analysis using confocal laser scanning microscopy, membrane inletmasspectrometry and PCR amplification of methanogen–specific gene sequences // FEMSMicrobiol.
Ecol. – 1998. – No.25. – P.179–188.233. Lueders T., Friedrich M.W. Effects of amendment with ferrihydrite and gypsum onthestructure and activity of methanogenic populations in rice field soil // Appl. Environ.Microbiol. – 2002. – No.68. – P.2484–2494.234.
Lugtenberg B., Kamilova F. Plant–growth–promoting rhizobacteria // Annu. Rev. Microbiol.– 2009. – No.63. – P.541–555.235. Luton P.E., Wayne J.M., Sharp R.J., Riley P.W. The mcrA gene as an alternative to 16SrRNA in the phylogenetic analysis of methanogen populations in landfill // Microbiology –2002. – No.148.
– P.3521–3530.236. Magnusson J., Schnurer, J. Lactobacillus coryniformis subsp. coryniformis strain Si3produces a broad– spectrum proteinaceous antifungal compound. // Applied andEnvironmental Microbiology. – 2001. – Vol.67. – No.1. – P.1–5.237. Maksimov I.V., Abizgildina R.R., Pusenkova L.I. Plant growth promoting rhizobacteria asalternative to chemical crop protectors from pathogens (Review) // Appl.
Biochem.Microbiol. – 2011. – No.47. – P.333–345.238. Malhotra M., Srivastava S. Stress– responsive indole– 3– acetic acid biosynthesisbyAzospirillum brasilenseSM and its ability to modulate plant growth // Eur. J. Soil Biol. –2009. – No.45. – P.73–80.239. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.–H. Phylogeneticoligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems andsolutions.