CM_FAQ3 (2) (1135266)
Текст из файла
FAQ: Численные Методы, часть III
Проблема собственных значений
10. Степенной метод решения частичной проблемы собственных значений.
См. [6], стр. 82.
Степенной метод применяется для нахождения максимального по модулю собственного значения матрицы. k-ое приближение к этому значению вычислется так:
Теорема 10.1. Пусть матрица A имеет полную систему из ортонормированных собственных векторов ei , которым соответсвуют собственные значения (i) , причем
|(1)| > |(2)| ... |(n)| (т.е. вектора занумерованы в порядке невозрастания модуля собственного значения, причем собственное значение (1) - не кратное).
Тогда итерационный процесс (10.1) сходится к собственному значению (1), причем
При этом величины сходятся к собственному вектору e1 (c точностью до постоянного сомножителя, по модулю равного 1):
11. Метод обратных итераций и обратных итераций со сдвигом решения частичной проблемы собственных значений.
Пусть найдено достаточно точное приближение ' к собственному значению . В методе обратных итераций приближения к собственному вектору e, соответсвующему , определяют последовательным решением систем уравнений
(A - 'E) yk+1 = xk (11.1)
с последующей нормировкой решения:
В качестве начального приближения берут произвольный ненулевой вектор x0.
12. Приведение матрицы к верхней почти треугольной форме при помощи преобразования отражения.
См. [3, стр. 484 (11.5)], [6, стр. 70].
Матрицами отражения называются матрицы вида V() = V = E - 2T. Умножение на матрицу V называется преобразованием Хаусхолдера (или отражением); это преобразование можно интерпретировать как ортогональное отражение вектора относительно гиперплоскости, проходящей через начало координат и имеющей нормальный вектор .
Утверждение 12.1. Матрица отражения является самосопряженной.
Утверждение 12.2. Матрица отражения является унитарной.
Утверждение 12.3. Матрица отражения V имеет собственное значение (-1) кратности 1, которому отвечает собственный вектор ; и собственное значение 1 кратности n-1, которому отвечает собственное подпространство, ортогональное к .
Утверждение 12.4. Пусть е - произвольный единичный вектор. Тогда для любого вектора y найдется единичный вектор , такой, что Vy = ||y|| e.
Матрица А=[aij] называется верхней почти треугольной (или верхней Гессенберговской), если aij=0 при i>j+1.
Теорема 12.5. Всякая невырожденная матрица А может быть представлена в виде A = QRQT, где матрица Q - унитарная, а матрица R - верхняя почти треугольная.
Алгоритм. Обозначим a1 = (a21,...,an1). Согласно утв. 12.4., найдется вектор x1, такой, что V(x1) a1 = || a1|| e1, где е1=(1,0,...,0). Положим
Умножим матрицу А на U1 сначала слева, а потом справа: A1 = U1A U1. В первом столбце матрицы А все элементы, начиная с 3-его, будут равны 0.
Аналогичный процесс повторяется для произвольного k=2,..,n-2.
13. Понятие о QR-алгоритме решения полной проблемы собственных значений. Сохранение верхней почти-треугольной формы при QR-алгоритме.
См. [3, стр. 486 (11.6)], [6], стр.123.
QR-разложением называется представление матрицы А в виде A=QR, где матрица Q - ортогональная, а матрица R - верхнетреугольная с положительными элементами на главной диагонали.
Утверждение 13.1. Для любой невырожденной вещественной матрицы А ее QR-разложение существует и единственно.
QR-алгоритм позволяет находить все собственные значения невырожденной матрицы A. Будем строить последовательность {Ak} матриц по следующим правилам: A1=A, а каждая последующая матрица Ak+1 получается из Ak следующим образом:
1) строим QR-разложение матрицы Ak: Ak=QkRk,
2) вычисляем матрицу Ak+1 как произведение матриц Qk и Rk в обратном порядке: Ak+1= RkQk.
Теорема 13.2.Пусть собственные значения матрицы А таковы, что
|(1)| > |(2)| > ... > |(n)|.
Тогда диагональные элементы матрицы Ak сходятся к собственным значениям матрицы А (порядок собственных значений может и нарушаться).
Утверждение 13.3. Если матрица А - верхняя почти треугольная, то все матрицы Ak , получаемые в QR-алгоритме - почти треугольные.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.