1 (1131253), страница 33
Текст из файла (страница 33)
В стандарте Fast Ethernet функции кодирования выполняет подуровень кодирования PCS, размещенный ниже средонезависимого интерфейса MII. В результате этого каждый трансивер должен использовать свой собственный набор схем кодирования, наилучшим образом подходящий для соответствующего физического интерфейса, например, набор 4B/5B и NRZI для интерфейса 100Base-FX.
Рисунок 4-46. Структура уровней стандарта Fast Ethernet, MII-интерфейс и трансивер Fast Ethernet
Интерфейс MII (medium independent interface) в стандарте Fast Ethernet является аналогом интерфейса AUI в стандарте Ethernet. MII-интерфейс обеспечивает связь между подуровнями согласования и физического кодирования. Основное его назначение - упростить использование разных типов среды. MII-интерфейс предполагает дальнейшее подключение трансивера Fast Ethernet. Для связи используется 40-контактный разъем. Максимальное расстояние по MII-интерфейсному кабелю не должно превышать 0,5 м.
Стандартом Fast Ethernet IEEE 802.3u установлены три типа физического интерфейса (рисунок 47, таблица 48): 100Base-FX, 100Base-TX и 100Base-T4.
Рисунок 4-47. Физические интерфейсы стандарта Fast Ethernet
100Base-FX
Стандарт этого волоконно-оптического интерфейса полностью идентичен стандарту FDDI PMD. Интерфейс Duplex SC допускает дуплексный канал связи.
100Base-TX
Стандарт этого физического интерфейса предполагает использование неэкранированной витой пары категории не ниже 5. Он полностью идентичен стандарту FDDI UTP PMD. Порт RJ-45 на сетевой карте и на коммутаторе может поддерживать наряду с режимом 100Base-TX режим 10Base-T, или функцию автоопределения скорости. Большинство современных сетевых карт и коммутаторов поддерживают эту функцию по портам RJ-45 и, кроме этого, могут работать в дуплексном режиме.
Метод кодирования 4B/5B. 10 Мбит/сек. версии Ethernet используют манчестерское кодирование для представления данных при передаче по кабелю. Метод кодирования 4B/5B определен в стандарте FDDI и без изменений перенесен в спецификацию PHY FX/TX. При этом методе каждые 4 бита данных MAC-подуровня (называемых символами) представляются 5 битами. Использование избыточного бита позволяет применить потенциальные коды при представлении каждого из пяти бит в виде электрических или оптических импульсов. Потенциальные коды обладают, по сравнению с манчестерскими кодами, более узкой полосой спектра сигнала, а, следовательно, предъявляют меньшие требования к полосе пропускания кабеля. Однако прямое использование потенциальных кодов для передачи исходных данных без избыточного бита невозможно из-за плохой самосинхронизации приемника и источника данных: при передаче длинной последовательности единиц или нулей в течение долгого времени сигнал не изменяется, и приемник не может определить момент чтения очередного бита.
При использовании пяти бит для кодирования шестнадцати исходных 4-битовых комбинаций можно построить такую таблицу кодирования, в которой любой исходный 4-битовый код представляется 5-битовым кодом с чередующимися нулями и единицами. Тем самым обеспечивается синхронизация приемника с передатчиком. Так как исходные биты MAC-подуровня должны передаваться со скоростью 100Мбит/cек., то наличие одного избыточного бита вынуждает передавать биты результирующего кода 4B/5B со скоростью 125 Мбит/cек., таким образом, межбитовое расстояние в устройстве PHY составляет 8 наносекунд.
Так как из 32 возможных комбинаций 5-битовых порций для кодирования порций исходных данных нужно только 16, то остальные 16 комбинаций в коде 4В/5B используются в служебных целях.
100Base-T4
Этот тип интерфейса позволяет обеспечить полудуплексный канал связи по витой паре UTP Cat.3 и выше. Именно возможность перехода предприятия со стандарта Ethernet на стандарт Fast Ethernet без радикальной замены существующей кабельной системы на основе UTP Cat.3 следует считать главным преимуществом этого стандарта.
Символьное кодирование 8B/6T. Если бы использовалось манчестерское кодирование, то битовая скорость в расчете на одну витую пару была бы 33,33 Мбит/с, что превышало бы установленный предел 30 МГц для таких кабелей. Эффективное уменьшение частоты модуляции достигается, если вместо прямого (2-уровневого) бинарного кода использовать 3-уровневый троичный код. Этот код, известный как 8B/6T, предполагает, что прежде, чем происходит передача, каждый набор из 8 бинарных битов (символ) сначала преобразуется в соответствии с определенными правилами в 6 троичных (3-уровневых) символов. На примере, показанном на рисунке 4-49 (b), можно определить скорость 3-уровневого символьного сигнала (100х6/8)/3=25МГц, значение которой не превышает установленный предел.
Интерфейс 100Base-T4 имеет один существенный недостаток - принципиальную невозможность поддержки дуплексного режима передачи. И если при строительстве небольших сетей Fast Ethernet с использованием повторителей 100Base-TX не имеет преимуществ перед 100Base-T4 (существует коллизионный домен, полоса пропускания которого не больше 100 Мбит/сек.), то при строительстве сетей с использованием коммутаторов недостаток интерфейса 100Base-T4 становится очевидным и очень серьезным. Поэтому данный интерфейс не получил столь большого распространения, как 100Base-TX и 100Base-FX.
Основные категории устройств, применяемых в Fast Ethernet, такие же, как и в Ethernet: трансиверы, конвертеры, сетевые карты (для установки на рабочие станции/файл-серверы), повторители, коммутаторы.
Трансивер - это (по аналогии с трансивером Ethernet) двухпортовое устройство, охватывающее подуровни PCS, PMA, PMD и AUTONEG, и имеющее с одной стороны MII-интерфейс, с другой - один из средозависимых физических интерфейсов (100Base-FX, 100Base-TX или 100Base-T4). Трансиверы используются сравнительно редко, как и редко используются сетевые карты, повторители и коммутаторы с интерфейсом MII.
Сетевая карта. Наиболее широкое распространение сегодня получили сетевые карты с интерфейсом 100Base-TX на шину PCI. Необязательными, но крайне желательными функциями порта RJ-45 является автоконфигурирование 100/10 Мбит/сек. и поддержка дуплексного режима. Большинство современных выпускаемых карт поддерживают эти функции.
Конвертер (media converter) - это двухпортовое устройство, оба порта которого представляют средозависимые интерфейсы. Конвертеры, в отличие от повторителей, могут работать в дуплексном режиме, за исключением случая, когда имеется порт 100Base-T4. Распространены конвертеры 100Base-TX/100Base-FX.
Коммутатор - одно из наиболее важных устройств при построении корпоративных сетей. Большинство современных коммутаторов Fast Ethernet поддерживает автоконфигурирование 100/10 Мбит/с по портам RJ-45 и могут обеспечивать дуплексный канал связи по всем портам (за исключением 100Base-T4). Коммутаторы могут иметь специальные дополнительные слоты для установления uplink-модуля. В качестве интерфейсов у таких модулей могут выступать оптические порты типа Fast Ethernet 100Base-FX, FDDI , ATM (155 Мбит/сек.), Gigabit Ethernet и др.
Gigabit Ethernet.
Интерес к технологиям для локальных сетей с гигабитными скоростями повысился в связи с двумя обстоятельствами - во-первых, успехом сравнительно недорогих (по сравнению с FDDI) технологий Fast Ethernet, во-вторых, со слишком большими трудностями, испытываемыми технологией АТМ на пути к конечному пользователю.
В марте 1996 года комитет IEEE 802.3 одобрил проект стандартизации Gigabit Ethernet 802.3z. В мае 1996 года 11 компаний организовали Gigabit Ethernet Alliance.
Альянс объединил усилия большого числа ведущих производителей сетевого оборудования на пути выработки единого стандарта и выпуска совместимых продуктов Gigabit Ethernet и преследовал следующие цели:
-
поддержка расширения технологий Ethernet и Fast Ethernet в ответ на потребность в более высокой скорости передачи
-
разработка технических предложений с целью включения в стандарт
-
выработка процедур и методов тестирования продуктов от различных поставщиков
29 июня 1998 г., с задержкой примерно на полгода от первоначально запланированного графика, был принят стандарт IEEE 802.3z. Соответствующие спецификации регламентируют использование одномодового, многомодового волокна, а также витой пары UTP cat.5 на коротких расстояниях (до 25 м). Стандартизация системы передачи Gigabit Ethernet по неэкранированной витой паре на расстояния до 100 м требовала разработки специального помехоустойчивого кода для чего был создан отдельный подкомитет P802.3ab. 28 июня 1999 г. был принят соответствующий стандарт.
На рисунке 4-50 показана структура уровней Gigabit Ethernet. Как и в стандарте Fast Ethernet, в Gigabit Ethernet не существует универсальной схемы кодирования сигнала, которая была бы идеальной для всех физических интерфейсов - так, для стандартов 1000Base-LX/SX/CX используется кодирование 8B/10B, а для стандарта 1000Base-T - специальный расширенный линейный код TX/T2. Функцию кодирования выполняет подуровень кодирования PCS, размещенный ниже средонезависимого интерфейса GMII.
Рисунок 4-50. Структура уровней стандарта Gigabit Ethernet, GII-интерфейс и трансивер Gigabit Ethernet
GMII-интерфейс. Средонезависимый интерфейс GMII (gigabit media independent interface) обеспечивает взаимодействие между уровнем MAC и физическим уровнем. GMII-интерфейс является расширением интерфейса MII и может поддерживать скорости 10, 100 и 1000 Мбит/сек. Он имеет отдельные 8-битные приемник и передатчик и может поддерживать как полудуплексный, так и дуплексный режимы. Кроме этого, GMII-интерфейс несет один сигнал, обеспечивающий синхронизацию (clock signal), и два сигнала состояния линии - первый (в состоянии ON) указывает наличие несущей, а второй (в состоянии ON) говорит об отсутствии коллизий. Также GMII-интерфейс обеспечивает еще несколько сигнальных каналов и питание. Трансиверный модуль, охватывающий физический уровень и обеспечивающий один из физических средозависимых интерфейсов, может подключаться, например, к коммутатору Gigabit Ethernet посредством GMII-интерфейса.
Подуровень физического кодирования PCS. При подключении интерфейсов группы 1000Base-X подуровень PCS использует блочное избыточное кодирование 8B10B, заимствованное из стандарта ANSI X3T11 Fibre Channel. На основе сложной кодовой таблицы каждые 8 входных битов, предназначенные для передачи на удаленный узел, преобразовываются в 10-битные символы (code groups). Кроме этого, в выходном последовательном потоке присутствуют специальные контрольные 10-битные символы. Примером контрольных символов могут служить символы, используемые для расширения носителя (дополняют кадр Gigabit Ethernet до его минимального размера - 512 байт). При подключении интерфейса 1000Base-T подуровень PCS осуществляет специальное помехоустойчивое кодирование для обеспечения передачи по витой паре UTP Cat.5 на расстояние до 100 метров. Два сигнала состояния линии - сигнал наличия несущей и сигнал отсутствия коллизий - генерируются этим подуровнем.
Подуровни PMA и PMD. Физический уровень Gigabit Ethernet использует несколько интерфейсов, включая традиционную витую пару категории 5, а также многомодовое и одномодовое волокно. Подуровень PMA преобразует параллельный поток символов от PCS в последовательный поток, а также выполняет обратное преобразование (распараллеливание) входящего последовательного потока от PMD. Подуровень PMD определяет оптические/электрические характеристики физических сигналов для разных сред. Всего определено 4 различных типов физических интерфейсов среды, которые отражены в спецификация стандарта 802.3z (1000Base-X) и 802.3ab (1000Base-T) (рисунок 4-51).
Рисунок 4-51. Физические интерфейсы стандарта Gigabit Ethernet
Интерфейс 1000Base-X основан на стандарте физического уровня Fibre Channel. Эта технология будет подробнее рассмотрена ниже. Fibre Channel - это технология взаимодействия рабочих станций, суперкомпьютеров, устройств хранения и периферийных узлов. Fibre Channel имеет 4-уровневую архитектуру. Два нижних уровня FC-0 (интерфейсы и среда) и FC-1 (кодирование/декодирование) перенесены в Gigabit Ethernet. Поскольку Fibre Channel является одобренной технологией, то такое перенесение сильно сократило время на разработку оригинального стандарта Gigabit Ethernet.
1000Base-X подразделяется на три физических интерфейса, различающихся характеристиками источника и приемника излучения: интерфейс 1000Base-SX и 1000Base-LX для многомодового оптоволокна и 1000Base-CX для экранированной витой пары (STP «twinax») на коротких расстояниях.
















