Chen Disser (1121212), страница 28
Текст из файла (страница 28)
Duran and I. E. Grossmann. An outer approximation algorithm for a class ofmixed-integer nonlinear programs. Mathematical Programming, 36:306–307, 1986.[31] F. R. Giles and W. R. Pulleyblank. Total Dual Integrality and Integer Polyhedra, volume 25. Elsevier North Holland, Inc., 1979.[32] P. E. Gill, W. Murray, and M. Saunders. SNOPT: An SQP algorithm for large-scaleconstrained optimization. SIAM Journal on Optimization, 12:979–1006, 2002.[21] S. Edelkamp.
Mixed propositional and numerical planning in the model checking inte-[33] F. Glover and G. Kochenberger. Critical event tabu search for multidimensional knap-grated planning system. In Proc. Workshop on Planning in Temporal Domains, pagessack problems. In Proc. of Int’l Conf. on Metaheuristics for Optimization, pages 113–47–52. AIPS, 2002.133, 1995.159160[34] N. I. M. Gould, D. Orban, and Ph. L. Toint.
An interior-point 1 -penalty method[45] A. K. Jónsson, P. H. Morris, N. Muscettola, and K. Rajan. Planning in interplanetaryfor nonlinear optimization. Technical report, RAL-TR-2003-022, Rutherford Appletonspace: Theory and practice. In Proc. National Conf. on Artificial Intelligence. AAAI,Laboratory Chilton, Oxfordshire, UK, 2003.2000.[35] B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations Research,[46] H.
Kautz and B. Selman. Pushing the envelope: planning, propositional logic, andstochastic search. In Proc. 13th National Conference on Artificial Intelligence, pages13(2):311–329, 1988.1194–1201. AAAI, 1996.[36] I. Harjunkoski, T. Westerlund, R. Pörn, and H. Skrifvars. Different transformationsfor solving non–convex trim loss problems by MINLP. European Journal of Operations[47] H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Proc.
Int’lJoint Conf. on Artificial Intelligence. IJCAI, 1999.Research, 105:594–603, 1998.[37] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation throughheuristic search. J. of Artificial Intelligence Research, 14:253–302, 2001.[38] K. Holmberg. On the convergence of the cross decomposition. Mathematical Program-[48] H. Kautz and J. P. Walser. Integer optimization models of AI planning problems.
TheKnowledge Engineering Review, 15(1):101–117, 2000.[49] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, May 1983.ming, 47:269–316, 1990.[39] K. Holmberg. Generalized cross decomposition applied to nonlinear integer program-[50] J. Koehler and J. Hoffmann. On reasonable and forced goal ordering and their use inming problems: Duality gaps and convexification in parts. Optimization, 23:341–356,an agenda-driven planning algorithm.
J. of Artificial Intelligence Research, 12:339–386,1992.2000.[40] A. Homaifar, S. H-Y. Lai, and X. Qi. Constrained optimization via genetic algorithms.[51] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proc. Second BerkeleySympos. Math. Stat. Prob., pages 481–492.
University of California Press, 1951.Simulation, 62(4):242–254, 1994.[41] L. Ingber. Adaptive Simulated Annealing (ASA). Lester Ingber Research, 1995.[52] A. Kuri. A universal elctric genetic algorithm for constrained optimization. In Proc.6th European Congress on Intelligent Techniques and Soft Computing, pages 518–522,[42] J. Joines and C. Houck. On the use of non-stationary penalty functions to solve non-1998.linear constrained optimization problems with gas. In Proceedings of the First IEEEInternational Conference on Evolutionary Computation, pages 579–584, 1994.[53] L.
S. Lasdon, A. D. Warren, A. Jain, and M. Ratner. Design and testing a generalizedreduced gradient code for nonlinear programming. ACM Trans. Math. Software, 4:34–[43] A. E. W. Jones and G. W. Forbes. An adaptive simulated annealing algorithm for50, 1978.global optimization over continuous variables.
Journal of Optimization Theory and[54] S. Leyffer. Mixed integer nonlinear programming solver. http://www-unix.mcs.anl.gov/Applications, 6:1–37, 1995.~leyffer/solvers.html, 2002.[44] A. K. Jónsson, P. H. Morris, N. Muscettola, and K. Rajan. Planning in interplanetaryspace: Theory and practice. In Proc. 2nd Int’l NASA Workshop on Planning and[55] S.
Leyffer.MacMINLP: AMPL collection of MINLP problems.unix.mcs.anl. gov/~leyffer/MacMINLP/, 2003.Scheduling for Space. NASA, 2000.[56] F. Lin. A planner called R. AI Magazine, pages 73–76, 2001.161162http://www-[57] D. Long and M. Fox. Efficient implementation of the plan graph in STAN. J. of AIResearch, 10:87–115, 1999.[69] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and A. Govindjee. Iterative repairplanning for spacecraft operations in the ASPEN system. In Proc. Int’l Symp. on[58] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading, MA,Artificial Intelligence Robotics and Automation in Space. European Space Agency, 1999.[70] R.
L. Rardin. Optimization in Operations Research. Prentice Hall, 1998.1984.[59] Z. Michalewicz and C. Z. Janikow. Handling constraints in genetic algorithms. In Proc.[71] I. Refanidis and I. Vlahavas. The GRT planner. AI Magazine, pages 63–66, 2001.of 4th Int’l Conf. on Genetic Algorithms, pages 151–157, 1991.[72] I.
Refanidis and I. Vlahavas. The MO-GRT system: Heuristic planning with multiple[60] D. Nau, H. Muoz-Avila, Y. Cao, A. Lotem, and S. Mitchell. Total-order planning withpartially ordered subtasks. In Proc. Int’l Joint Conf. on Artificial Intelligence, pagescriteria. In Proc. Workshop on Planning and Scheduling with Multiple Criteria.
AIPS,2002.425–430. IJCAI, 2001.[73] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard. Some guidelines for genetic[61] NEOS. The NEOS server for optimization. http://www-neos.mcs.anl.gov/neos/, 2005.algorithms with penalty functions. In Proc. of 3rd Int’l Conf. on Genetic Algorithms,pages 191–197, 1989.[62] R.
S. Nigenda, X. Nguyen, and S. Kambhampati. AltAlt: Combining the advantages ofGraphplan and heuristic state search. Technical report, Arizona State University, 2000.[74] T. J. Van Roy. Cross decomposition for mixed integer programming. MathematicalProgramming, 25:46–63, 1983.[63] D. Orvosh and L. Davis. Shall we repair? genetic algorithms, combinatorial optimization, and feasibility constraints. In Proc. of 5th Int’l Conf. on Genetic Algorithms,1993.[75] H. S. Ryoo and N.
V. Sahinidis. A branch-and-reduce approach to global optimization.Journal of Global Optimization, 8(2):107–139, 1996.[64] J. Penberethy and D. Weld. UCPOP: A sound, complete, partial order planner for ADL.In Proc. 3rd Int’l Conf. on Principles of Knowledge Representation and Reasoning, pages[76] N. V. Sahinidis. BARON: A general purpose global optimization software package.Journal of Global Optimization, 8(2):201–205, 1996.103–114.
KR Inc., 1992.[77] M. Schoenauer and Z. Michalewicz. Evolutionary computation at the edge of feasibility.[65] J. Penberethy and D. Weld. Temporal planning with continuous change. In Proc. 12thIn Proc. of 4th Parallel Problem Solving from Nature, 1996.National Conf. on AI, pages 1010–1015. AAAI, 1994.[78] J.
F. Shapiro. Generalized Lagrange multipliers in integer programming. Operations[66] J. Porteous, L. Sebastia, and Jörg Hoffmann. On the extraction, ordering, and usage ofResearch, 19:68–76, 1971.landmarks in planning. In Proc. European Conf. on Planning, pages 37–48, 2001.[79] M. B. D. Subbarao and S.
Kambhampati. Sapa: A domain-independent heuristic metric[67] D. Powell and M. M. Skolnick. Using genetic algorithms in engineering design opti-temporal planner. Technical report, Arizona State University, 2002.mization with non-linear constraints. In Proc. of 5th Int’l Conf.
on Genetic Algorithms,[80] A. Tate, B. Drabble, and R. Kirby. O-Plan2: an open architecture for command,pages 424–431, 1993.planning and control. Intelligent Scheduling, pages 213–239, 1994.[68] G. Rabideau, S. Chien, C. Eggemeyer T. Mann, J. Willis, S. Siewert, and P. Stone.Interactive, repair-based planning and scheduling for shuttle payload operations. InProc. Aerospace Conf., pages 325–341. IEEE, 1997.163[81] J. Tind and L. A. Wolsey. An elementary survey of general duality theory in mathematical programming. Mathematical Programming, pages 241–261, 1981.164[82] A. Trouve.