Домрина. Лекции (2009) v4.0 (1118430), страница 2
Текст из файла (страница 2)
åå äîê-âî) In0 (y) ðàâíîìåðíî ñõîäèòñÿ íà [c,d].In (y) ñõîäèòñÿ íà [c,d] ê I(y), ðÿä ïðîèçâîäíûõ ñõîäèòñÿ ðàâíîìåðíî ⇒Ïî òåîðåìå î ïî÷ëåííîì äèôôåðåíöèðîâàíèè ôóíêöèîíàëüíûõ ïîñëåäîâàòåëüíîñòåé:R∞I 0 (y) = lim In0 (y) = ∂f∂y (x, y)dx, y ∈ [c, d]n→∞aÒåîðåìà 6 (ñîáñòâåííîå èíòåãðèðîâàíèå).Ïóñòü f ∈ C[a, +∞) × [c, d],R∞f (x, y)dx ñõîäèòñÿ ðàâíîìåðíî íà [c,d] ê I(y).aÒîãäàRdR∞I(y)dy =cañõîäèòñÿ)Rddx f (x, y)dy (ïðè ýòîì óòâåðæäàåòñÿ, ÷òî èíòåãðàë ñïðàâà òîæåcÄîê-âî: Äîñòàòî÷íî ïîêàçàòü, ÷òî limRdI(y)dy −cRρRρρ→∞ aRdRddx f (x, y)dy = I(y)dycc(I)RdRd R∞Rd RρRd R∞dx f (x, y)dy = dy f (x, y)dx − dy f (x, y)dx = dy f (x, y)dxaccacacρÂî âòîðîì èíòåãðàëå ïîìåíÿëè ïîðÿäîê èíòåãðèðîâàíèÿ â ñèëó òåîðåìû 2Èç ðàâíîìåðíîé ñõîäèìîñòè f(x,y):R∞ε∀ ε > 0 ∃A(ε) ≥ a ∀ρ ≥ A(ε), ∀ y ∈ [c, d] | f (x, y)dx| < d−cρRdRρca| I(y)dy −RdRdccdx f (x, y)dy| ≤dy|R∞f (x, y)dx| <ρRdcεd−c dy= ε,÷òî îçíà÷àåò ñóùåñòâîâàíèå ïðåäåëà è âûïîëíåíèÿ ðàâåíñòâà (I)Ñëåäñòâèå: Ìîæåì èçìåíèòü óñëîâèÿ òåîðåìû, ÷òîáû ðàâíîìåðíàÿ ñõîäèìîñòü ñëåäîâàëàèç ïðèçíàêà Äèíè:Ïóñòü f(x,y) íåïðåðûâíà è íåîòðèöàòåëüíà íà [a, ∞) × [c, d] ,R∞∀ y ∈ [c, d] ∃I(y) = f (x, y)dx, ïðè÷åì I(y) ∈ C[c, d].aÒîãäàRdcI(y)dy =R∞aRddx f (x, y)dyc8Òåîðåìà 7 (íåñîáñòâåííîå èíòåãðèðîâàíèå).Ïóñòü f(x,y) íåïðåðûâíà è íåîòðèöàòåëüíà íà [a, ∞) × [c, ∞) ,+∞R∞R∀ x ≥ a ∃ f (x, y)dy = K(x),∀y ≥ c ∃f (x, y)dx = I(y),caïðè÷åì K ∈ C[a, +∞), I ∈ C[c, ∞).R∞Òîãäà åñëè ñõîäèòñÿ îäèí èç èíòåãðàëîâZ∞è îíè ðàâíû:Z∞dxaÄîê-âî: ÏóñòüZ∞f (x, y)dy =cR∞dxacRpÏîêàæåì, ÷òî limp→+∞ caR∞cI(y)dx, òî ñõîäèòñÿ è äðóãîé,Z∞dycR∞K(x)dx,f (x, y)dxaf (x, y)dy ñõîäèòñÿ.dyR∞f (x, y)dx =aíåïðåðûâíîé ôóíêöèè)Ïî ñëåäñòâèþ òåîðåìû 6:RpR∞dxadyR∞cR∞(îïðåäåëåí ∀p ≥ c êàê èíòåãðàë îòf (x, y)dycf (x, y)dx =aR∞Rpdx f (x, y)dyaccc∀p ≥ aÒàêèì îáðàçîì :R∞ R∞Rp R∞R∞R∞ RpR∞ R∞| dx f (x, y)dy − dy f (x, y)dx| = | dx( − )| = dx f (x, y)dy =acÒ.ê.R∞aR∞caR∞=apdx( f (x, y)dy) ñõîäèòñÿ ⇒cR∞∀ ε > 0 ∃R1 (ε) ≥ a :⇒adxR∞R1RR1pR∞apdxdxR∞f (x, y)dy < ε/2cR1f (x, y)dy < ε/2 ∀p ≥ c, ò.ê.
f (x, y) ≥ 0f (x, y)dy +R∞dxR1R∞f (x, y)dy <pRR1dxaR∞f (x, y)dy + ε/2 <pÒ.ê. f(x,y) íåïðåðûâíà è íåîòðèöàòåëüíà íà [a, R1 ] × [c, ∞),R∞K(x) = f (x, y)dy íåïðåðûâíà íà [a, R1 ] ⇒cïî ïðèçíàêó ÄèíèR∞cf (x, y)dy ñõîäèòñÿ ðàâíîìåðíî íà [a, R1 ] ⇒∀ ε > 0 ∃p1 (ε) : ∀ρ ≥ p1 (ε), ∀ y ∈ [a, R1 ]RR1dxa<ε2R∞R∞f (x, y)dy <ρε2⇒f (x, y)dy < ε/2 ⇒p+ε2(R1 −a)= ε ⇒ ∀ρ ≥ p1 (ε) ⇒R∞adxR∞f (x, y)dy −cRpc9dyR∞af (x, y)dx < ε, ÷.ò.ä.Íåñîáñòâåííûå èíòåãðàëû 2ãî ðîäà, çàâèñÿùèå îò ïàðàìåòðîâ(ˆ∗)Rbf (x, y)dx, ∀ y ∈ Yaf (x, y) èíòåãðèðóåìà â ñîáñòâ.
ñìûñëå íà ∀ [a, c], ãäå a < c < bè ôóíêöèÿ f(x,y) èìååò îñîáåííîñòü ïðè x=b.RbÎïðåäåëåíèå. (ˆ∗)f (x, y)dx ñõîäèòñÿ ðàâíîìåðíî íà Y, åñëèa∀ε>0Rb| f (x, y)dx| < ε∃b1 (ε) ∈ [a, b) : ∀ρ ∈ [b1 (ε), b], ∀ y ∈ YρÊðèòåðèé Êîøè. (ˆ∗) ñõîäèòñÿ ðàâíîìåðíî íà Y ⇔∀ε>0∃b1 (ε) ∈ [a, b) : ∀ρ1 , ρ2 ∈ [b1 (ε), b], ∀ y ∈ Y|Äîê-âî: òàêîå æå, êàê è äëÿ èíòåãðàëîâ 1ãî ðîäà.Rρ2f (x, y)dx| < ερ1Ïðèçíàêè Äèíè è Âåéåðøòðàññà àíàëîãè÷íû ñëó÷àþ èíòåãðàëîâ 1ãî ðîäà.Ïðèçíàê Âåéåðøòðàññà:Ïóñòü f(x,y) èíòåãðèðóåìà â ñîáñòâåííîì ñìûñëå íà ∀ [a, c], ãäå a < c < b,∃φ(x) : |f (x, y)| ≤ φ(x) ∀ y ∈ Y, ∀ x ∈ [a, b],φ(x) èíòåãðèðóåìà â ñîáñòâåííîì ñìûñëå íà [a, c], a < c < b,Rbφ(x)dx ñõîäèòñÿ.
Òîãäà (ˆ∗) ñõîäèòñÿ ðàâíîìåðíî.aÒåîðåìû î íåïðåðûâíîñòè, äèôôåðåíöèðóåìîñòè, ñîáñòâåííîì èíòåãðèðîâàíèè îñòàþòñÿRbb−a,â ñèëå. Ïðè èññëåäîâàíèè ñâîéñòâ I(y) = f (x, y)dx ïîëåçíà çàìåíà ïåðåìåííîé: t = b−xñâîäÿùàÿ èíòåãðàë ê I(y) =R∞af (b −1b−ab−at , y) t2 dt- èíòåãðàëó I ðîäà.Âû÷èñëåíèå èíòåãðàëà ÄèðèõëåZ∞I=0sin xdxxÂâåäåì âñïîìîãàòåëüíûé èíòåãðàë I(y) =R∞ sin x0xe−xy dx (∗),y≥0Áóäåì ñ÷èòàòü, ÷òî ïðè x=0 ïîäûíòåãðàëüíàÿ ôóíêöèÿ ðàâíà 1, òîãäà îíà íåïðåðûâíà ïðèx ≥ 0, y ≥ 0 , à èíòåãðàë îò ýòîãî íå èçìåíèëñÿ.1. Ïóñòü f (x, y) =sin xx ,òîãäàR∞0f (x, y)dx ñõîäèòñÿ ðàâíîìåðíî íà y ≥ 02. g(x, y) = e−xy - ìîíîòîííà ïî x, |g(x, y)| ≤ 1 - ðàâíîìåðíî îãðàíè÷åíà⇒ (∗) ñõ-ñÿ ðàâíîìåðíî íà y ≥ 0 ïî II ïàðå óñëîâèé Äèðèõëå-Àáåëÿ1.sin x −xy- íåïðåðûâíà íà x ≥ 0, y ≥x e∂ sin x −xy) = − sin x e−xy ∈ C(R2 )∂y ( x e0 (ïðè x=0 ïåðåîïðåäåëèëè)2.
Ñàì èíòåãðàë, êàê ìû óæå äîêàçàëè, ñõîäèòñÿ103. Ïðè y ≥ y0 > 0 èíòåãðàë îò ïðîèçâîäíîé :R∞− sin x e−xy dx ñõ-ñÿ ðàâíîìåðíî ïî ïðèçíàêó Âåéåðøòðàññà:0| − sin x e−xy | ≤ e−xy0 ,èíòåãðàëR∞0e−xy0 dx - ñõîäèòñÿ⇒ Âûïîëíåíû óñëîâèÿ òåîðåìû 5 î äèôôåðåíöèðóåìîñòèR∞⇒ I 0 (y) = − sin x e−xy dx ∀ y ∈ [y0 , y1 ], 0 < y0 < y1 < ∞0•R∞R∞R∞e−xy d(cos x) = − cos xe−xy |∞−ycos xe−xy dx =0000·¸R∞ −xyR∞R∞+∞−xy2−xy= 1 − y e d(sin x) = 1 − yesin x|0 + ysin xe dx = 1 − y 2 sin xe−xy dxsin x e−xy dx = −0⇒I 0 (y)=−R∞0sin xe−xy dx0=01− 1+y2• Èíòåãðèðóåì ⇒ I(y) = − arctan y + c ïðè y>0• Ïîñòîÿííóþ c íàéäåì, ïîñ÷èòàâ lim I(y) :Ïðè y > 0 |I(y)| ≤R∞y→∞e−xy dx0=1y→ 0, ïðè y → ∞, ò.ê. | sinxx |≤1⇒ 0 = lim I(y) = lim − arctan y + c = −π/2 + c ⇒ c = π/2y→∞y→∞• Äîêàæåì íåïðåðûâíîñòü I(y) â íóëå, òîãäà I(0) = lim I(y) = c = π/2I(y) =R∞ sin x0xy→0+0e−xy dx- ñõ-ñÿ ðàâíîìåðíî ïðè y ≥ 0 ,ïîäûíòåãðàëüíàÿ ôóíêöèÿ íåïðåðûâíà⇒ Íåïðåðûâíîñòü I(y) ïðè y ≥ 0 ïî òåîðåìå 4.
Çíà÷èò, I(0) = π/2+∞ R sin x dx , α > 0x0R∞ sin αxR∞ sin αx,α = 0x dx =αx d(αx) = 000−∞Rsin xx dx , α < 00Z∞0sin αxπdx = sgn(α)x211Èíòåãðàëû ÝéëåðàΓ(x) =R∞0B(x, y) =tx−1 e−t dt - Ãàììà-ôóíêöèÿR10tx−1 (1 − t)y−1 dt - Áåòà-ôóíêöèÿ1. Îáëàñòü ñõîäèìîñòèÎêîëî 0: tx−1 e−t v tx−1 ⇒Íà áåñêîíå÷íîñòè:R∞0tx−1 e−t dt ñõîäèòñÿ ∀ x > 0|tx−1 e−t | < e−t/2 , ïðè t ≥ t0 (x) ⇒R∞0tx−1 e−t dt ñõîäèòñÿ äëÿ ∀ xÒàêèì îáðàçîì, Γ(x) îïðåäåëåíà ïðè x>0tx−1 (1 − t)y−1 v tx−1 îêîëî 0 ⇒ x > 0tx−1 (1 − t)y−1 v (1 − t)y−1 îêîëî 1 ⇒ y > 0⇒ B(x, y) îïðåäåëåíà ïðè x > 0, y > 02. Âû÷èñëåíèå Γ(n), n ∈ NR∞Γ(1) = e−t dt = 1,0Γ(x + 1) =R∞tx e−t dt = −0R∞0tx d(e−t ) = −tx e−t |∞0 +R∞xtx−1 e−t dt ⇒0Γ(x + 1) = xΓ(x) ∀ x > 0 (íå òîëüêî íàòóðàëüíûõ)n ∈ N ⇒ Γ(n + 1) = n ∗ (n − 1) ∗ · · · 1 ∗ Γ(1) = n! ⇒ Γ(n + 1) = n!3.
Íåïðåðûâíîñòü è áåñêîíå÷íàÿ äèôôåðåíöèðóåìîñòü Γ(x), x > 0R1R∞Γ(x) = tx−1 e−t dt + tx−1 e−t dt01Ïîêàæåì, ÷òî( îáà èíòåãðàëà ñõîäÿòñÿ ðàâíîìåðíî ∀ [a, b], 0 < a < b < +∞ta−1 e−t , 0 < t ≤ 1|tx−1 e−t | ≤ b−1 −t⇒t e , t≥1ïî ïðèçíàêó Âåéåðøòðàññà Ã(õ) ñõ-ñÿ ðàâíîìåðíî íà [a, b]⇒ ïî òåîðåìå 4 î íåïðåðûâíîñòè Γ(x) ∈ C[a, b]⇒ Γ(x) ∈ C(0, ∞), ò.ê. a,b>0 - ëþáûådk(tx−1 e−t )dxk= (ln t)k tx−1 e−t ∈ C(0, ∞)×òîáû èñïîëüçîâàòü òåîðåìó î äèôôåðåíöèðóåìîñòè, äîñòàòî÷íî ïîêàçàòü, ÷òî èíòåãðàëûR1 x−1 −tR∞t e (ln t)k dt, tx−1 e−t (ln t)k dt01ñõîäÿòñÿ ðàâíîìåðíî íà ∀[a, b], 0 < a < b < ∞ ∀k ∈ N ⇒òîãäà, èñïîëüçóÿ ìàòåìàòè÷åñêóþ èíäóêöèþ è òåîðåìó 5, ìîæíî äîêàçàòü:R∞Γ(k) (x) = tx−1 e−t (ln t)k dt0(ta−1 e−t | ln t|k = ta−1 e−t (− ln t)k , 0 < t ≤ 1kx−1−t|t e (ln t) | ≤ b−1 −tt e | ln t|k = tb−1 e−t (ln t)k ,1≤t<∞R1 a−1 −tt e (ln t)k dt ñõîäèòñÿ, ò.ê.
äëÿ äîñòàòî÷íî ìàëûõ t012ìîæíî ïîäîáðàòü δ > 0: |ta−1 e−t (ln t)k | ≤ ta−1−kδ , a − kδ > 0R∞ x−1 −tt e (ln t)k dt ñõîäèòñÿ,ò.ê. |tb−1 e−t (ln t)k | ≤ tb e−t äëÿ äîñòàòî÷íî áîëüøèõ t1Ãðàôèê Γ(x): Γ(1) = 1, Γ(2) = 1! = 1R∞Γ00 (x) = tx−1 e−t (ln t)2 dt > 0 ⇒ Γ0 (x) ìîíîòîííî âîçðàñòàåò ⇒0ó Ã(õ) åñòü åäèíñòâåííàÿ òî÷êà ìèíèìóìà, êîòîðàÿ íàõîäèòñÿ ìåæäó 1 è 2.lim Γ(x) = limx→0+0x→0+0Γ(x+1)x= +∞, ò.ê. lim Γ(x + 1) = Γ(1) = 1x→0+0Γ(n + 1) = n! ⇒ lim Γ(x) = +∞x→∞Ñâîéñòâà Â(x,y)1. Ñèìåòðè÷íîñòü B(x, y) = B(y, x) {çàìåíà s = 1 − t}2.B(x,y+1)y=B(x+1,y)xR1R1Äîêàçàòåëüñòâî.
B(x, y + 1) = tx−1 (1 − t)y dt = x1 (1 − t)y dtx =0Ã!0¯1 1µ¶1¯R xR x11xyyy−1¯= x t (1 − t) ¯ − t d(1 − t)= x 0 + y t (1 − t) dt = xy B(x + 1, y)03. B(x, y + 1) =00yx+y B(x, y)³àíàëîãè÷íî B(x + 1, y) =Äîêàçàòåëüñòâî. x, y > 0 B(x, y + 1) ==R1tx−1 (1 − t)y−1 dt −0R10R1´xx+y B(x, y)tx−1 (1 − t)y dt =0R1tx−1 (1 − t)(1 − t)y−1 dt =0tx (1 − t)y−1 dt = B(x, y) − B(x + 1, y) = B(x, y) − xy B(x, y + 1) ⇒(x + y)B(x, y + 1) = yB(x, y) ⇒ B(x, y + 1) =yx+y B(x, y)dτ1, t ∈ (0, 1) ⇒ 0 < τ < +∞, dt = −τ +1(τ + 1)2Ã!x−1 Ã!y−1R0R∞ τ y−1 dτR∞ τ x−1 dτ1τ− dτB(x, y) ===x+yx+yτ +1τ +1(τ + 1)2+∞0 (1 + τ )0 (1 + τ )4.
Çàìåíà t =Ïîñëåäíåå ðàâåíñòâî - ñëåäñòâèå ñèììåòðè÷íîñòè B(x, y).135. Ñâÿçü ìåæäó B(x,y) è Ã(õ)Γ(x) · Γ(y)Γ(x + y)(∗) B(x, y) =x, y > 0Äîêàçàòåëüñòâî.∞R1) Äîêàæåì äëÿ ñëó÷àÿ x>1,y>1=R∞0R∞ dtdτ · τ x−1· e−t0 1+τµt1+τB(x, y)·Γ(x+y) =R∞τ x−1·(1 + τ )x+ydτ0¶x+y−1n= z=t1+τf (τ,z)dz0z}|Z∞{dt · e−t tx+y−1 =0o, t = z(1 + τ ) , z ∈ (0, +∞)=f (τ,z)=R∞dτ0=R∞R∞dz ·⊗τ x−1 e−z e−τ z z x+y−1 =0dz ·R∞dz0e−z0R∞d(τ z) ·(τ z)x−1 e−τ zz y−1R∞z}|{x−1 −z −τ z x+y−1dτ · τe ez=0=0R∞Z∞dz · e−zzy−1du · ux−1 e−u = Γ(y) · Γ(x)·00|∞R{z}f (τ,z)dτ0⊗ Èçìåíåíèå ïîðÿäêà èíòåãðèðîâàíèÿ âîçìîæíî â ñèëó òåîðåìû 7:a) f (τ, z) - íåïðåðûâíà è íåîòðèöàòåëüíà íà [0, +∞) × [0, +∞) ïðè x>1, y>1R∞τ x−1b) f (τ, z) dz = {ñì. ðàíåå} =· Γ(x + y) - íåïðûâíà ïî τ ïðè x>1(1 + τ )x+y0R∞c) f (τ, z) dτ = {ñì.
ðàíåå} = e−z z y−1 · Γ(x) - íåïðûâíà ïî z0d)R∞0dτR∞0f (τ, z) dz = B(x, y) · Γ(x + y) - ñõîäèòñÿ2) Òåïåðü ìîæåì äîêàçàòü óòâåðæäåíèå ïðè x>0,y>0.x+yx+yx+y+1Äåéñòâèòåëüíî, B(x, y) =B(x + 1, y) =B(x + 1, y + 1) =xxy(x + y)(x + y + 1) Γ(x + 1)Γ(y + 1)= {ïîëüçóåìñÿ ñëó÷àåì 1} ==xyΓ(x + y + 2)(x + y)(x + y + 1)xΓ(x)yΓ(y)Γ(x) · Γ(y)==, x > 0, y > 0xy(x + y + 1)(x + y)Γ(x + y)Γ(x + y)Çàìå÷àíèå: Çíàÿ ïîñëåäíåå ñâîéñòâî, ëåãêî âîññòàíîâèòü çàáûòûå êîýôôèöèåíòû â 2,3.Ïðèìåð: Γ(1/2) =R∞0t−1/2 e−t dt = {t = x2 } =R∞0142x−1 e−x 2xdx = 2R∞02e−x dx = 2√π2=√πÀñèìïòîòè÷åñêîå ïîâåäåíèå Γ(x) ïðè x → +∞Γ(x + 1) =√2πx( xe )x (1 + α(x)), ãäå lim α(x) = 0x→+∞Ïðè x = n ∈ N ïîëó÷àåì ôîðìóëó Ñòèðëèíãà:√Γ(n + 1) = n! = 2πn( ne )n (1 + αn ), αn - á.ì.
ïîñëåäîâàòåëüíîñòüÄîê-âî: Γ(x + 1) ==R∞−1R∞tx e−t dt = {t = x(τ + 1), τ = 1 −0xx (τ + 1)x e−x(τ +1) xdτ = ( xe )x xR∞tx− 1 < τ < ∞} =e−x(τ −ln(τ +1)) dτ−121. Ïëàí íàøèõ äåéñòâèé: τ − ln(τ + 1) = u2 è âûðàçèòü dτ ÷åðåç duÎáîçíà÷èì φ(τ ) = τ − ln(τ + 1)1τφ0 (τ ) = 1 − τ +1= τ +1⇒ φ(τ ) - èìååò åäèíñòâåííûé ìèíèìóì â 0, φ(0) = 0lim φ(τ ) = +∞, lim φ(τ ) = +∞τ →+∞τ →−1+0p2Ïóñòü u(τ ) = sgnτ 2(τ − ln(τ + 1)) , òîãäà φ(τ ) = u2 , −∞ < u < +∞ 3³p´0 √sgn τsgnτ2φ(τ)φ0 (τ ) > 0; ïðè τ 6= 0= 2 √2 φ(τ )qp2(τ −(τ − 21 τ 2 +O(t3 )))u0 (τ ) = lim sgn τ 2(τ − ln(τ + 1)) = lim=τ|τ |τ →0τ →0√ 23= lim τ +O(t ) = 1 > 0; ïðè τ = 0|τ |τ →02∃u0 (τ ) ⇒ τ − ln(τ + 1) = u2 äèôôåðåíöèðóåìà ïî τ .τdττ +1Äèôôåðåíöèðóåì: τ +1= u dudτ ⇒ ïðè τ 6= 0du = u τ = u +uτ(∗∗)Ôîðìóëà Òåéëîðà ñ îñòàòî÷íûì ÷ëåíîì â ôîðìå Ëàãðàíæà:21ln(τ + 1) = τ − τ2 (1+θτ, 0 < θ = θ(τ ) < 1)2221Òàêèì îáðàçîì, u2 = τ − ln(τ + 1) = τ2 (1+θτ⇒ {ò.ê.