Т.А. Леонтьева, В.С. Панферов, В.С. Серов - Задачи по теории функций комплексного переменного с решениями (1118152), страница 30
Текст из файла (страница 30)
0To6pa311Tb KOHcpopMHO sepxHIOIO nonynJIOCKOCTb{z: Im z > O} Ha np5lMoyronhHHK c sepurnHaM11 A 1 = 1, A2 = 1 + iH,A 3 =-1 +iH,A4=-l.13.106. 0To6pa3HTb KOHcpopMHO Ha BHyTpeHHOCTh e)lHHli!qHQro Kpyra { w: JwJ < 1}:1rar.1) BHyTpeHHOCTh MHoroyroJibHli!Ka;2) BHellIHOCTb MHOroyroJibHli!Ka;3) mryrpeHHOCTb BbinYKJIOro npaBHJibHOro MHoroyrOJibHHKa;4) 3Be3)l006pa3HbIH )leC5lTHyroJibHHK;5) BHellIHOCTb KBa)lparn;6) BHyTpeHHOCTh napa60Jihl.13.107. HafiT11 KottcpopMHhIH 06pa3 Bepxttefi rronyrn10cKocT11{ z: Im z > 0}, ocyrn:ecrnn5leMhIH oT06pa:lKett11eMr:d;w = Jo (1- ;2 )213 ·13.108.
Hai1:m KOHcpopMHhIH o6pa3 BHyTpeHHOCTH e)lHHJ1qHoroz: Jzl < 1}, ocyrn:ecrnn5leMbIH oro6pa)f(em1eMKpyra {r:d;w =Jo (1- ;4 )112 .I'llaBa 14rAPMOHHqECKHE <l>YHKQHHu(x, y) .UBYX2apAw11u1.JecKoii B.[{eikTBl1TeJibHa.SI cpyHKUl1.SlMeHHhIXx11yHa3&rnaeTc.sr,UeHCTBl1TeJibHhIX nepeo6nacrnD,ecmru(x, y)B 3TOH o6Jiacm .llBa:>KJlhI )l11cpcpepeHu11pyeMa 11 Y.llOBnernop.sreT ypasttemuo JianJiaca.[{sa:>K.UhI )J.11cpcpepeHu11pyeMa.sr B o6JiacmKU11.SIv(x, y)Ha3bIBaeTC.SlCKOH cpyHKU11eHu(x, y),D)lei1crn11TeJihHa.sr cpytt-2apMOHU1.JeCKU conpfl:JICeHHOUc rapMOHl1':!e-eCJil1 B 3TOH o6Jiacm cnpase,UJI11Bhl COOTHO-UieHl1.SlUx<l>yHKUH.SIo6JiacmDv(x, y)(x0, y0)Uy=- Vx.TaK)Ke 51BJUieTC51 rapMOHH':!eCKOH B O)lHOCB513HOH11 MO)f(eT 6h1rh ttai1)letta no cpopMyJiev(x,y)r)J.e= V_n=t:·:',J)-uydx+u_,.dy) + C,- npo113BOJihHM cp11Kc11posaHHa.sr TO':!Ka 06JiacT11TerpaJI He 3as11c11T OT nyni:, coe)l11H.sr101uero TO':!Kl111 ueJI11KOM Jie)f(amero B 06Jiacn1(x 0 , y 0)D,a 11H-11(x, y)D.EcJI11 )lettcTBHTeJihHhie cpyttKU1111u(x, y) 11 v(x, y) .SIBJIHIOTC.SI rapD, ro cpyttKU11.SI f(z) = u(x, y)MOH11':!ecK11 conp.sr)f(eHHhIMl1 B o6JiaCTl1+ i v(x, y),z= x + iy,aHaJil1TH':!Ha B o6JiacmD.c .upyroi1 CTOpOHhl,f(z) = u + iv .SIBJI.SieTc.sr attaJI11T11':!ecKoi1 B 06JiacT11 D,u(x, y) 11 v(x, y) .SIBJI.SIIOTC.Sl rapMOHl1':!eCKl1 conp.SI)f(eHHhl06JiacT11 D.
TaK11M o6pa3oM, JII06a.sr attaJI11T11':!ecKa.sr cpyHKU11.SIecJI11 cpyHKU11.SITO cpyHKUl111Ml1 BMO)f(eT 6hITh BOCCTaHOBJieHa no ee )J.eHCTBl1TeJihHOH (11Jil1 MHl1MOH)':!aCTl1 c TO':!HOCThIO .llO ':!11CTO MHl1MOH (11Jil1 )leHCTBl1TeJibHOH) KOHCTaHThl ..ZJ)rn cpyHKUHH, rapMOH11':!ecKoi1 B 3aMKHYTOM Kpyre pam1ycaueHTpOM B TO':!KeRc(x 0 , y 0 ), cnpase)lJil1Ba cpopMyJia cpe,nttero 3Ha':!ett11.sr1 r1,,.2n °.du(x0 ,y0 ) = - 1, u(x0 +Rcosq:i,y0 +Rsmq:i) q:i,I'Jiaea 14196T. e. 3Ha'Iemie rapMOHH'IeCKOH cpyHKUHH B TO'IKe orrpe.uem1eTCH ee3H34eHHHMH Ha OKpy)l(HOCTH c ueHTpOM B 3TOH TO'IKe.EcJm OTJIH'IHaH OT rrocTOHHHOH cpyHKUHH u(x, y) HBJrneTcH rapMo-D 11 HerrpepbIBHOH B D , TOD cpyHKUH5! u(x, y)He MO)l(eT .llOCTMraTb CBOero MaK-HH'IeCKOH s orpaHH'IeHHOH o6nacTHBHYTPH o6nacrnCHM3JihHOfO H MHHHMaJihHOfO 3H34eHHH (rrpHHUHIT MaKCHMyMa rapMOHH'IeCKOH cpyHKUHH).D cpyHKUH5! 6eCKOHe'IHO .umpcpepeH-rapMOHH'IeCKa5! B o6nacrnu11pyeMa s D, rrpH'IeM mo6a5! rrpOH3BO.UH35! rapMOHH'IeCKOH cpyHKu1111 TaK)l(e 5!BJIHeTCH rapMOHH'IeCKOH cPYHKUHeH.fapM0Hw:1ecKa5! B o6nacrn D cpyHKUH5! u(x, y) B OKpecrnocmmo6oi1: TO'IKH (x0 , y 0 ) Eu(x, y)D MO)l(eT 6hITh pa3JIO)l(eHa B CTerreHHOH pH.U=LL a,,,,,(x-x0)11(y- y 0 )"',11=0111=0KOTOpbIH paBHOMeptto H a6comOTHO CXO)lHTC}! BHYTPH Kpyra CXO)lHMOCTH.
PasHoMepHo cxo.uRm11i1:cHPM 113 rapMOHH'IecKHX cPYHKUMH}!BJI}!-ercH rapMOHH'IeCKOH d>YHKUHei1: B o6naCTH CXOLIHMOCTH 3TOro pMa.Crrpase.un11sa meope.Ma Jluyewurn )lJIH rapMOHH'IeCKHX cPYHKUHH:eCJIH cPYHKUH5! u(x, y) 5!BJI5!eTCH rapMOHH'IeCKOH cpyHKUHeH Ha ITJIOC-R 11 orpaHH'IeHa, TO u(x, y) = const.3ai:ta•rn ,II;upuxJie. ITycTh D - orpaHH'IeHHaHKOTOpow y HBJIHeTCH 33MKHYTOH KYCO'IHO-rna)lKOHKOCTH2o6nacTh, rpam1uaKpMBOH )l{op.uaHa.D cocTOHT BTOM, qTo6hr HaHTH cpyHKUHIO u(x, y), rapMott11qecKy10 B D, HerrpepbIBHYlO B D 11 rrp11tt11Ma10rn;y10 Ha y HerrpepbIBHhre 3Ha'IeHH5!cp(x, y), T. e.6.u = 0, (x, y) E D,3a.uaqa ,n:11p11xne .llJI5! orreparnpa Jlarrnaca B 06nacT11uj (x. v)Ey = m(x,y), (x, y) E y.'t'B cnyqae HeorpaHH'IeHHoif 06nacT11 D 3a.uaqa ,n:11p11xne cocTOHTB TOM, 'IT06br HaiiTH cpyHKUHIO, rapMOHH'IeCKYIO B D, orpaHH'IeHHYIO11 rrp11H11Ma10w;y10 3a.uaHHhie HerrpepbIBHhie 3Ha'IeHmr Ha rpaH11ue D.ITycTh D - orpaH11qeHHaH o6nacTh, rpaH11ua KOTopoii y HBJIHeTcH3aMKHyToi1: KycoqHo-rna.uKoii Kp11soii )l{opnatta.
3aoal/a Heil.Mm-taLIJIH orrepaTopa Jlarrnaca B o6naCTH D COCTOHT B TOM, 'IT06hr H3HTI1cPYHKUHIOpyeMy10 Bu(x, y), rapMottw:1ecKy10 s D, tterrpephIBHO .u11cpcpepeHu11D 11 y.uosnernopH10my10 ycnos1110r APMOHl14ECKl1E <t>YHKU1111~:Jr.1)ED = \jf(X, y),aan -rAe -197(x, y)E y,-npoH3BOAHall no ttanpasnemno BHerrrne11 HOpMaJIH Ky.<I>yHKUHSI rp11ua 3a;::i:a11u ,LI;upuxJie. IIyen, D - orpaHHlJeHHaJIo6nacn,, rpami:ua Kornpow llBJilleTCll 3aMKHYTOH KycotJHO-rnanKoii:Kp11soi1: )Kopnatta. <DyttKu11ei1: fp11Ha 3aAatJH .LJ:11p11xne AJill oneparnpa J1annaca tta3brnaeTcll cpyttKUHll1G(z,s) =-log Iz-s I+g(z,s),z,sE D,2nrAe cpyttKUHll g(z,s) yAosnernoplleT ycnos11llM:1) np11 Ka)f(,UOM cp11Kc11posaHHOM ~ E D cpyHKUHll g(z, ~) llBJilleTcllrapMOHHtJecKow B 06nacT11D no nepeMeHHOH z, T.
e.!J., g(z,~)= 0, z E D;2) npH KroKAOM cpHKCHpOBaHHOMno z B DH~ cpyHKUHll g(z, ~) HenpepbIBHa=14.1. IIycn, cpyttKUHllf(z) u +iv aHaJIHTHlJHa s o6nacTH D . .LJ:oKa3aTb, 'ITO cpyttKUHH u(z) 11 v(z) JIBJillIOTCll rapMOHHtJeCKHMH B D.14.2 . .D:oKa3aTb, qTo aHaJIHTHtJecKall B OAHOCBll3HOi1: 06nacT11 Df(z) = u + iv MO)!(eT 6bITb BOCCTaHOBJieHa no ee AeHCTBH-cpyHKUHllTeJibHOH qacTH c TOlJHOCTbIO AO aMHTHBHoi1 lJHCTO MHHMOH nocToHHHOH c no cpopMynef(z) = u(z) +it (-u,dx+ u,dy) + c,rAe z= x + iy, Zo = Xo + iyo -npOH3BOJlbHa5! cpHKCHpOB3HH3ll TOlJKao6nacTH D, a HHTerpan He 3aBHCHT OT nyTH, coeAHHmoiuero TO'IKHz 0 11 z 11 uen11KOM Jie)Kaiuero s D.14.3 . .D:oKa3aTb, lJTO aHaJIHTHlJeCKall B OAHOCBJl3HOHcpyHKUH5! f(z) = ll + iv MO)KeT 6bITb BOCCTaHOBJieHa no eeo6naCTHMHMMOHlJaCTH c TOlJHOCTblO AO aMHTMBHOH AeHCTBHTeJibHOH noCT05!HHOH.Ha/;lrn: cpopMyny, BOCCTaHaBJIHBaIOIUYIO f(z) ITO cpyHKUHHv(z).T!iaea 1419814.4.
,Il.oKa3aTb,qrn rapMOH11:qecKa5! B o6nacrnD cPYHKUH5! 6ec-KOHeqHo .u11:¢¢epem:~11:pyeMa B D.14.S. IlycTb,D.eMCTBHTeJibHhie cPYHKUHHpeHuwpyeMhl B o6nacTHu(x, y) H v(x, y) .u11:¢¢e-D tt BCIO.D.Y B D y.uosnernop5!IOT ycnoBH5!M:fJulfJx = fJvlfJy, 8v/8y = - fJulfJy. ,Il.OK333Th, qTQ cpyHKUHH u H v 5!BJl5!IOTC5! rapMoH11:qecKHMH B D.14.6. ,Il.oKa33Th,qTo KOHeqHa5! JlHHeMH35! KOM6HH3UH5! c !10CT0-5!HHhIMH K03cpcpHUHeHT3MH rapMOHHqecKHX cpyHKUHM 5!BJI5leTC5! TaK)!{e cpyHKUHeM rapMOHHqecKOM.14.6.1.
IIoKa3aTh,qrn rrpoH3Be.uemre rapMOHHqecKHX cpyHKUHMHe o65!33HO 6hITh rapMOHHqeCKOM cpyHKUHeM.14.7. ,Il.OKa3aTb,qTQ eCJIH cPYHKUH5!u(x, y) 5!BJI5!eTC5! rapMOHHqe-au+mCKOM B o6nacTHD, TO r+.yHKUH5!'!'u , m, n = 0,1, ... , TaK)!{e 5!BJI5!ax ay11111eTc5! rapMOHHqecKoi1 B D.14.8.
IlOCTPOHTh cpyttKUHIO, rapMOH:HqeCKH C011p5!)!{eHHYJO c ll3HHOM:22x , ;I)u(x,y)=xy; 2)u(x,y)=x -y +xy; 3) u(x,y)= ,x-+ y4) u(x, y)=_.!:.log(x 2+ /); 5) u(r, <p) = r <p cos <p + r log r6) u(x, y) =2?'x--y-,, , ;(x-+ Y-t7) u(x, y)sin <p;=y cos y ch x + x sin y sh x;=log(x2 + /) - x1 - / ;9) v(x, y) =x cos x ch y + y sin x shy.8) v(x, y)14.9.BoccTaHOBHTh attanwrnqecKyIO cpyttKUHIO fiz) no 3a11aHHO-MY MonynIO 11: apryMeHTy:I= (x2 + y2)e'; 2) argf(z) =xy;3) jf(z) I= e''coslqi (z=re;"' ); 4) argf(z)=<p+rsin<p(z=re;"').1) jf(z)14.10. IlycTh u(x, y)H v(x, y)-corrp5!)!{eHHhie rapMoH11:qecK11ecpyttKUHM . ,Il.oKaJaTh, qro cpyttKUHH U(x, y) H V(x, y) cnenyIOmero s1111a5!BJI5!IOTC5! TaIOKe conp5!)!{eHHhIMH rapMOHHqeCKHMH cpyttKUH5!MH:1)u =au+ bv, v =bu+ av,a H b - KOHCTaHThI;r APMOHVil.JECKI1E <llYHKUI1l12)Hv,,u =au, + bu2, v =av, + bv2,199a H b - KOHCTaHTbl, cPYHKUHH u,U2 H 112 rrorrapHO 5!BJUHOTC5! corrpIDKeHHb!MH rapMOHH'ieCKHMHcPYHKUH5!MH;3)u = e" cos v, v =e" sin v; 4) u = U1U2 -5) U = u2 - v2 V = 2uv·''6) U =V1V2,au+mu(x, y)dx" dyv = U1V2 + U2V1;v = d + v(x, y)11111dx" ay"'111'(11, m - Heorp11uaTeJibHn1e ueJI&Ie q11cJia).14.11.Hai1TH rapMoHH'ieCKHe cPYHKUHH cJie.uy10ruero mma:1) u(x, y)3) u(x, y)5)= cp(x);=cp(x2 + /);2u(x, y) = <p[ x : y2 J;14.12.= cp(ylx);2) u(x, y)4) u(x, y)=cp(x2 -6) u(x, y)= cp(.xy).y2);Hai1TH rapMOHH'ieCKHe cpyHKUHH, coxpaH5!IOIUHe rrocrn-5!HH&1e 3Haqemrn Ha Ka)K,llOH KpHBOH CJie,llyIOIUHX ceMeHCTB KpHBbIX:1) x= e;14.13.2) y =ex;4) x2+ y2 = ey.fiyCTb cpyHKUH5! ./CZ) amUIHTH'iHa B o6JiaCTl1 D:now o6naCTH ftz)argftz), log lf(z)j?14.14.23) x +/=ex;::f.
0.HBCIO.L\Y BbY.llYT JIH rapMOHHqeCKHMH cpyHKUHH Jf(z)j,flycTb u(x, y) - rapMOHHqecKa5! cpyHKUH5!. ,ll.JI5! KaKHX .ueH:-CTBHTeJibHbIXcpyHKUHHf(t)O)lHOfOrrepeMeHHOfOtcpyHKUH5!f(u(x, y)) 6y.ueT rapMOHH'IeCKoi1? Ey.ueT JIM rapMoH11qec1<0H cpyHKUH5! u2(x, y)?14.15. ,ll.oKa3aTb,liTO rrpH HeBblpO)l{,lleHHOM rrpeo6pa30BaHHH ne-peMeHHb!X (x, y) rapMOHHqecKa5! cpyHKUH5! nepeXO.llHT B rapMOHH'ieCKyIO.14.16.3arrHCaTb ypaBHeHHe Jlarrnaca82uf8x2 +8 2uf8y2= 0 B IT0-1I5!pHOH CHCTeMe KOOp.llHHaT 11 Hai1TH ero peweHHe, 3aBHC5!IUee TOJibKO OTr.14.17.
,ll.oKa3aT&cpopMyJiy cpe.uHero 3HalieHH5! )lJI5! rapMOHH'ie-cKoH cpyHKUHH.14.18.flycTb cpyHKUH5! u(z) orrpe;::i:eJieHa s o6JiaCTH D. ,ll.oKa3aTh,liTO ecJIH .llJI5! mo6oH: TO'iKH z0 ED H n106oro Kpyra { z: jz - zol< r} EDcnpase;::i:nwsa cpopMyna cpe;::i:Hero 3HalieHH5! ,llJI5! cpyHKUHH u(z), TOu(z) 5!BJI5!eTc.sI rapMOHH'ieCKO~ cpyHKUHeH: s o6JiaCTH D.I':wea 1420014.19. ,[(oKa3aTb np11mvm MaKCHMyMa rapMOHl1'-IeCKOH cpyHKU1111.14.20. ,[(oKa3aTh e.n11HcTBeHHOCTh peweH115! 3a.naq:11 .[(11p11xne.14.20.1. IlycTh cpyHKU:115! u(x, y) rapMOH11qHa B o6nacrn D 11 paBHa Hymo Ha ee rpaH11u:e. Cne.nyeT JIM OTCIO.D.a, qrn u(x, y)= O?14.20.2. IlycTh cpyHKUl15! u(x, y) rapMOHl1Y:Ha B 3aMKHYTOH o6nacTl1B11 orpaH11qeHa BB,a Ha rpaH11ue 06nacT11 D 06paIUaerc51 BHYJih. Cne.nyeT n11 OTcIO.na, 'ITO u(x, y)=O?14.20.3.
BepHO Jil1 yrBep)K,ll.eHtte: ecn11 cpyHKU1151 u(x, y) rapMoHMY:Ha 11 orpaH11'IeHa B 3aMKHyroH: o6nacrn B , TO iQ.f u ( x, y) .nocDT11raeTc5I Ha rpaH11ue 06nacT11D?14.20.4. IlycTh u(x, y) - rapMoH11l!eCKa5I cpyHKU:1151 B o6nacTM DM cymecrnyeT nocne.noBaTeJihHOcTh TO'IeK {x"' y11 } E D, n E N, KOTopa5! cxo,n:MTC5! K TO'IKe (x0 , Yo) E D M .llJI51 KOTopoi1 u(x0 , y 0 )0.Cne.n:yeT JIM 0Tc10.n;a, 'ITO u(x, y)0 B 06nacT11 D?==14.21.