Ответы (1115944), страница 9
Текст из файла (страница 9)
IhehkujZ\gh]hgZdehgZ_kebgZdjbklZeebq_kdmxieZklbgdm\uj_aZggmxi_ji_g^bdmeyjghdhilbq_kdhchkbiZ^Z_lkoh^ysbckyimqhdiehkdhiheyjbah\Zggh]hk\_lZlh^eyg_dhlhjuo α[m^mlj_Zebah\u\Zlvky mkeh\by fZdkbfmfZ ± ijb gZ[ex^_gbb q_j_a iheyjhb^gZieZklbgd_[m^ml\b^guk\_leu_blzfgu_dhevpZZ\p_glj_±[_eh_iylghp_gljZevgucemqimqdZjZkijhkljZgy_lky\^hevhilbq_kdhchkbihwlhfmhgg_bkiulu\Z_l^\hcgh]hemq_ij_ehfe_gby Ihkdhevdm \k_ emqb iehkdhklv dhe_[Zgbc dhlhjuo iZjZee_evgZ beb i_ji_g^bdmeyjgZhilbq_kdhchkbdjbklZeeZgZ\uoh^_©^Zxlªlhevdhg_h[udgh\_ggu_h[udgh\_ggu_ emqb b g_ bgl_jn_jbjmxl bgl_jn_j_gpbhggZy dZjlbgZ i_j_k_q_gZ [_euf dj_klhf ;he__ m^h[gh gZ[ex^_gb_ wlhc dZjlbgu \ kdj_s_gguo iheyjhb^Zo dj_kl ± lzfgucbeb\k\_l_eZa_jZIhbgl_jn_j_gpbhgghfmdj_klmfh`ghijZ\bevgh mklZgh\blvdjbklZeeqlhbkihevam_lky\f_lh^_dhghkdhibb.2) Bkdmkkl\_ggZyhilbq_kdZyZgbahljhiby:Bkdmkkl\_ggZyhilbq_kdZyZgbahljhibyfh`_l\hagbdgmlvijbdZdhfeb[hjZamihjy^h37q_gbbkljmdlmjubahljhigh]h\_s_kl\ZgZijbf_j1.
Iv_ahwe_dljbq_kdbcwnn_dl (nhlhmijm]hklvijbijbeh`_gbbdbahljhighfml\zj^hfm l_em f_oZgbq_kdh]h gZijy`_gby ihy\ey_lky hilbq_kdZy Zgbahljhiby ± wlh k\yaZgh kbkdZ`_gb_f jZkly`_gb_f beb k`Zlb_f djbklZeebq_kdhc j_rzldb \_^ms_f d \hagbdgh\_gbxhilbq_kdbohk_c Wnn_dl ebg__g ih gZijy`_gbx ne − no = k1σ , ]^_ k1 – mijm]hhilbq_kdZy ihklhyggZy ihklhyggZy ;jxkl_jZ ^ey klzdhe k1 ≈ 10−11 − 10−12 f 2 + Ebg_cgZy aZ\bkbfhklv \uihegy_lky lhevdh ijb g_ hq_gv [hevrbo gZijy`_gbyo Wnn_dl bkihevamxl ^eybamq_gbyjZkij_^_e_gbyf_oZgbq_kdbogZijy`_gbc\l\zj^uol_eZo2. We_dljhhilbq_kdb_wnn_dluijbihf_s_gbbbahljhigh]h\_s_kl\Z\we_dljbq_kdh_ihe_ fh`_l \hagbdgmlv hilbq_kdZy Zgbahljhiby Kms_kl\m_l ^\Z lbiZ we_dljhhilbq_kdbownn_dlh\wnn_dlIhdd_evkZebg_cgucbwnn_dlD_jjZd\Z^jZlbqgucWnn_dlIhdd_evkZgZ[ex^Z_lkylhevdh\iv_ahwe_dljbq_kdbodjbklZeeZolh_klvdjbklZeeZo ]^_ k`Zlb_ beb jZkly`_gb_ \^hev hij_^_ezgguo gZijZ\e_gbc \uau\Z_l iheyjbaZpbxijyfhciv_ahwnn_dlbebwe_dljbq_kdh_ihe_\uau\Z_lk`Zlb_bebjZkly`_gb_ihhij_^_ezgguf gZijZ\e_gbyf h[jZlguc iv_ahwnn_dl >ey wnn_dlZ Ihdd_evkZ ne − no = k2 E ,]^_k2 – ihklhyggZyIhdd_evkZWlhlwnn_dlgZ[ex^Z_lky\lZdbo\_s_kl\ZodZdLiNbO3 (k2= 3.7·10–10f<KH2PO4, NH4H2PO4.Wnn_dlD_jjZgZ[ex^Z_lky\`b^dhklyoklzdeZobdjbklZeebq_kdbo\_s_kl\Zog_iv_ahwe_dljbdZo Ijb ijbeh`_gbb \g_rg_]h ihey ihy\ey_lky hilbq_kdZy hkv gZijZ\e_ggZy\^hevihey ne − no = k3 E 2 , ]^_k3 – ihklhyggZyD_jjZ^eygbljh[_gaheZk3 = 10–18 f2/<2Nbabq_kdZy ijbqbgZ wnn_dlZ D_jjZ khklhbl \ hjb_glZpbb fhe_dme beb ^jm]bo kljmdlmjguowe_f_glh\ \_s_kl\Z b bkdZ`_gbb we_dljhgguo h[hehq_d \ we_dljbq_kdhf ihe_ < i_j\hfkemqZ_ gZ[ex^Z_lky hjb_glZpbhgguc wnn_dl D_jjZ ijhy\ey_lky ^ey \_s_kl\ khklhysbobaiheyjguoqZklbp\h\lhjhf±iheyjbaZpbhgguc^ey\_s_kl\khklhysbobag_iheyjguoghe_]dhiheyjbam_fuofhe_dmeWnn_dlD_jjZfh`ghgZ[ex^ZlvijhimkdZyemqk\_lZq_j_a\_s_kl\hh[emqZ_fh_eZa_jhf±\wlhfkemqZ_emqeZa_jZ\eby_lgZjZkijhkljZg_gb_emqZh[uqgh]hk\_lZlh_klvgZjmrZ_lkyijbgpbikmi_jihabpbbWe_dljhhilbq_kdbcwnn_dlbkihevam_lky^eyba]hlh\e_gbyhilbq_kdboaZl\hjh\±k\_lijhimkdZxl q_j_a kdj_s_ggu_ iheyjbaZlhju f_`^m dhlhjufb jZkiheh`_gZ ieZklbgdZ hilbq_kdbbahljhigh]h\_s_kl\Z < hlkmlkl\bb \g_rg_]h we_dljbq_kdh]h ihey k\_l g_ ijhoh^blijbgZeh`_gbbiheyhij_^_ezgghcgZijy`zgghklbieZklbgdZij_\jZsZ_lky\ieZklbgdm\©ihe\heguªbkbkl_fZijhimkdZ_lk\_lLZdb_mkljhckl\Zfh`ghbkihevah\Zlv^eyfh^meypbbk\_lh\h]hihlhdZg_h[oh^bfhc\hilbq_kdhci_j_^Zq_bgnhjfZpbb±^eywlh]h[hevr_ih^oh^yliv_ahwe_dljbdblZddZdwnn_dlebg__gZ\j_fyj_eZdkZpbbhq_gvfZehihkjZ\g_gbxkj_eZdkZpb_chjb_glbjh\Zgguofhe_dme\hafh`gZfh^meypbykb]gZeh\ \ukhdbo qZklhl3.
FZ]gblhhilbq_kdbcwnn_dl (wnn_dlDhllhgZFmlhgZ):>Zggucwnn_dliheghklvxZgZeh]bq_gwnn_dlmD_jjZ ne − no = k4 B 2 , ]^_k4 – ihklhyggZyDhllhgZFmlhgZgZb[hevrb_\_ebqbguk4 = 10–6–10–7 Le–2^eydheehb^guojZkl\hjh\b`b^dbodjbklZeeh\FZeu_agZq_gbyihklhygghcg_iha\heyxlijZdlbq_kdbbkihevah\Zlv^Zggucwnn_dlAZf_qZgb_ihklhyggu_;jxkl_jZIhdd_evkZD_jjZbDhllhgZFmlhgZfh]ml[ulvdZdiheh`bl_evgufblZdbhljbpZl_evgufbbaZ\bkylhl^ebgu\heguk\_lZ Hilbq_kdZy Zdlb\ghklv djbklZeeh\ b fhe_dme Hilbq_kdb_ Zglbih^u b bahf_ju Iheh`bl_evgu_ b hljbpZl_evgu_ hilbq_kdb Zdlb\gu_ \_s_kl\Z AZdhg ;bh=bihl_aZNj_g_eyBkdmkkl\_ggZyhilbq_kdZyZdlb\ghklvwnn_dlNZjZ^_y1) <b^uhilbq_kdhcZdlb\ghklb:Hilbq_kdZyZdlb\ghklv±y\e_gb_ih\hjhlZiehkdhklbiheyjbaZpbbebg_cghiheyjbah38\Zggh]hk\_lZijbijhoh`^_gbbq_j_a\_s_kl\hKms_kl\m_l^\Z\b^Zhilbq_kdhcZdlb\ghklb±h^gb\_s_kl\Zhilbq_kdbZdlb\gu\ex[hfZ]j_]Zlghfkhklhygbbhgbh[jZah\ZguobjZevgufblh_klvhilbq_kdbZdlb\gufbfhe_dmeZfb±gZijbf_jfhehqgZydbkehlZ^jm]b_±lhevdh\djbklZeebq_kdhf<i_j\hfkemqZ_hilbq_kdZyZdlb\ghklvk\yaZgZkhlkmlkl\b_fp_gljZbg\_jkbbmfhe_dme\h\lhjhf±khlkmlkl\b_f p_gljZ bg\_jkbb \ djbklZeebq_kdhc kljmdlmj_ ijb wlhf \_s_kl\h fh`_l bf_lvg_fhe_dmeyjgh_kljh_gb_gZijbf_jd\ZjpHilbq_kdb Zdlb\gu_ fhe_dmeu fh]ml kms_kl\h\Zlv \ \b^_ ^\mo nhjf ± hilbq_kdbobahf_jh\Hilbq_kdb_bahf_ju±wlhg_kh\f_klbfu_^jm]k^jm]hfa_jdZevgu_bah[jZ`_gbyhgb fh]ml \klj_qZlvky ihjhagv h[mkeh\eb\Zy hilbq_kdmx Zdlb\ghklv `b^dhklb ]ZaZ bebl\zj^h]hl_eZZfh]ml\jZ\guodhebq_kl\ZogZoh^blvky\kf_kbh[jZamyjZp_fZl>eyjZa^_e_gby hilbq_kdbo bahf_jh\ bkihevamxl j_Zdpbb k hilbq_kdb Zdlb\gufb j_Z]_glZfb beb[bhobfbq_kdb_ kihkh[u ?keb hilbq_kdZy Zdlb\ghklv h[mkeh\e_gZ djbklZeebq_kdhc kljmdlmjhc\_s_kl\Zlhkhhl\_lkl\mxsb_fh^bnbdZpbbgZau\Zxlhilbq_kdbfbZglbih^Zfb.Hilbq_kdbc bahf_j beb Zglbih^ gZau\Zxl iheh`bl_evguf _keb hg \jZsZ_l iehkdhklv iheyjbaZpbb \ijZ\h ^ey gZ[ex^Zl_ey kfhljys_]h gZ\klj_qm emqm e_\h\jZsZxsb_bahf_jugZau\ZxlhljbpZl_evgufb.2) Dhebq_kl\_ggu_oZjZdl_jbklbdbhilbq_kdhcZdlb\ghklb:?kebhilbq_kdZyZdlb\ghklvh[mkeh\e_gZkljh_gb_ffhe_dmeulh\_s_kl\hkhojZgy_lk\hxhilbq_kdmxZdlb\ghklvijbjZkl\hj_gbb\g_Zdlb\ghfjZkl\hjbl_e_ijbwlhfm]heih\hjhlZhij_^_ey_lkykhhlghr_gb_faZdhg;bh): α = [α ]lc, ]^_>α] – m^_evgZyhilbq_kdZyZdlb\ghklv m^_evgh_ \jZs_gb_ l ± imlv ijhc^_gguc emqhf \ jZkl\hj_ k ± dhgp_gljZpbyM^_evgZy hilbq_kdZy Zdlb\ghklv aZ\bkbl hl ^ebgu \hegu k\_lZ b h[uqgh mdZau\Z_lky ^ey`zelhcebgbbgZljbyh[hagZqZ_lky[α]D)Baf_j_gbyhilbq_kdhcZdlb\ghklbbkihevamxl^eyhij_^_e_gbykljh_gbyhilbq_kdbZdlb\guofhe_dmef_lh^iheyjbf_ljbb).>ey djbklZeebq_kdbo \_s_kl\ aZdhg ;bh ijbgbfZ_l nhjfm α = [α ]l.
<_ebqbgZ m^_evghchilbq_kdhcZdlb\ghklbaZ\bkblhljZaguonZdlhjh\±l_fi_jZlmju^Z\e_gbyjZkl\hjbl_ey3) H[tykg_gb_hilbq_kdhcZdlb\ghklb:>eyh[tykg_gbyhilbq_kdhcZdlb\ghklbij_^eh`_gZ]bihl_aZNj_g_eyij_^iheZ]Zxlqlh\hilbq_kdbZdlb\guo\_s_kl\ZoijZ\ucbe_\ucpbjdmeyjghiheyjbah\Zgguck\_ljZkijhkljZgyxlkykjZagufbkdhjhklyfbqlh\iheg_h[tykgbfhgZijbf_j^eyd\ZjpZ]^_hilbq_kdZy Zdlb\ghklv h[mkeh\e_gZ gZebqb_f hk_c 1 beb 2 [uklj__ jZkijhkljZgy_lky lhlk\_l\dhlhjhfgZijZ\e_gb_\jZs_gbykh\iZ^Z_lkgZijZ\e_gb_faZdjmqb\Zgbyhkbkbff_ljbb Iehkdh iheyjbah\Zggmx \hegm fh`gh jZkkfZljb\Zlv dZd j_amevlZl gZeh`_gby ^\mo\hegpbjdmeyjghiheyjbah\Zgguo\ijhlb\hiheh`guogZijZ\e_gbyoZfieblm^ZdZ`^hcbalZdbo\hegjZ\gZiheh\bg_Zfieblm^uj_amevlbjmxs_c\heguIjbihiZ^Zgbb\hilbq_kdbZdlb\gh_\_s_kl\h^\_khklZ\eyxsb_\hegu[m^mli_j_f_sZlvkykjZagufbkdhjhklyfbihwlhfmdfhf_glm\uoh^Zba\_s_kl\Zih\hjhl\_dlhjZ?\h^ghcbakhklZ\eyxsbohdZ`_lky2π[hevr_ gZ ∆ϕ =∆, ∆ = d ( n+ − n− ).
< j_amevlZl_ kmffZjguc \_dlhj ih\_jgzlky gZ m]heλ∆ϕ π∆α==. Iheh`bl_evgu_ agZq_gby α khhl\_lkl\mxl ijZ\h\jZsZxs_fm \_s_kl\m hlλ2jbpZl_evgu_±e_\h\jZsZxs_fmLZdbf h[jZahf hilbq_kdZy Zdlb\ghklv y\ey_lky ijbf_jhf hilbq_kdhc Zgbahljhibb bfh`_l [ulv \ua\ZgZ bkdmkkl\_ggh ± \ fZ]gblghf ihe_ LZdhc wnn_dl gZau\Zxl wnn_dlhfNZjZ^_y±^eyih\hjhlZiehkdhklbiheyjbaZpbbg_h[oh^bfhgZijZ\blvemq\^hevgZijZ\e_gby fZ]gblgh]h ihey n+ − n− = k5lB, ]^_ l – imlv ijhc^_gguc \ \_s_kl\_ k5 – ihklhyggZy<_j^_ aZ\bkbl hl ^ebgu \hegu k\_lZ b l_fi_jZlmju <hagbdgh\_gb_ hilbq_kdhc Zdlb\gh39klb \ fZ]gblghf ihe_ oZjZdl_jgh ^ey \k_o \_s_kl\ h^gZdh h[uqgh \hagbdZxsbc wnn_dlqj_a\uqZcghfZeohjhrbcj_amevlZlfh`_l[ulvihemq_g\n_jjhfZ]g_lbdZo\gmljbdhlhjuoihe_^hihegbl_evghmkbeb\Z_lkyBkdmkkl\_ggh_ \hagbdgh\_gb_ hilbq_kdhc Zdlb\ghklb h[mkeh\e_gh bg^mpbjh\Zgb_fdjm]h\h]h^\b`_gbywe_dljhgh\\fZ]gblghfihe_<lZdhf\_s_kl\_[uklj__jZkijhkljZgy_lkyk\_lpbjdmeyjghiheyjbah\Zgguc\gZijZ\e_gbb^\b`_gbywe_dljhgh\lh_klvgZijZ\e_gbb\jZs_gbywe_dljbq_kdh]hiheyWlhgZijZ\e_gb_hij_^_ey_lkygZijZ\e_gb_ffZ]gblgh]h ihey ihwlhfm agZd m]eZ \jZs_gby iehkdhklb iheyjbaZpbb g_ aZ\bkbl hl gZijZ\e_gbyjZkijhkljZg_gby emqZ lh _klv ^ey ih\hjhlZ iehkdhklb iheyjbaZpbb fh`gh bkihevah\Zlvfgh]hdjZlgh_hljZ`_gb_k\_lZhlfZ]gblZ40.