Лекции по операционным системам (1114738), страница 24
Текст из файла (страница 24)
{
int fd[2];
pipe(fd);
if(fork())
{
close(fd[0]);
write(fd[1],...);
...
close(fd[1]);
...
}
else
{
close(fd[1]);
while(read(fd[0], ...))
{
...
}
...
}
}
В рассмотренном примере после создания канала посредством системного вызова pipe() и порождения дочернего процесса посредством системного вызова fork() отцовский процесс закрывает дескриптор, открытый на чтение из канала, потом производит различные действия, среди которых он пишет некоторую информацию в канал, после чего закрывает дескриптор записи в канал, и, наконец, после некоторых действий завершается. Процесс-сын первым делом закрывает дескриптор записи в канал, а после этого циклически считывает некоторые данные из канала. Стоит обратить внимание, что закрытие дескриптора записи в канал в отцовском процессе можно не делать, т.к. при завершении процесса все открытые файловые дескрипторы будут автоматически закрыты. Но в дочернем процессе закрытие дескриптора записи в канал обязателен: в противном случае, поскольку дочерний процесс читает данные из канала циклически (до получения кода конца файла), он не сможет получить этот код конца файла, а потому он зациклится. А код конца файла не будет помещен в канал, потому что при закрытии дескриптора записи в канал в отцовском процессе с каналом все еще будет ассоциирован открытый дескриптор записи дочернего процесса.
Пример. Реализация конвейера. Приведенный ниже пример основан на том факте, что при порождении процесса в ОС Unix он заведомо получает три открытых файловых дескриптора: дескриптор стандартного ввода (этот дескриптор имеет нулевой номер), дескриптор стандартного вывода (имеет номер 1) и дескриптор стандартного потока ошибок (имеет номер 2). Обычно на стандартный ввод поступают данные с клавиатуры, а стандартный вывод и поток ошибок отображаются на дисплей монитора. В системе можно организовывать цепочки команд, когда стандартный вывод одной команды поступает на стандартный ввод другой команды, и такие цепочки называются конвейером команд. В конвейере могут участвовать две и более команды.
В предлагаемом примере реализуется конвейер команд print|wc, в котором команда print осуществляет печать некоторого текста, а команда wc выводит некоторые статистические характеристики входного потока (количество байт, строк и т.п.).
int main(int argc, char **argv)
{
int fd[2];
pipe(fd); /* организовали канал */
if(fork())
{
/* ПРОЦЕСС-РОДИТЕЛЬ */
/* отождествим стандартный вывод с файловым
дескриптором канала, предназначенным для записи */
dup2(fd[1],1);
/* закрываем файловый дескриптор канала,
предназначенный для записи */
close(fd[1]);
/* закрываем файловый дескриптор канала,
предназначенный для чтения */
close(fd[0]);
/* запускаем программу print */
execlp(“print”,”print”,0);
}
/* ПРОЦЕСС-ПОТОМОК */
/*отождествляем стандартный ввод с файловым дескриптором
канала, предназначенным для чтения */
dup2(fd[0],0);
/* закрываем файловый дескриптор канала, предназначенный для
чтения */
close(fd[0]);
/* закрываем файловый дескриптор канала, предназначенный для
записи */
close(fd[1]);
/* запускаем программу wc */
execl(“/usr/bin/wc”,”wc”,0);
}
В приведенной программе открывается канал, затем порождается дочерний процесс. Далее отцовский процесс обращается к системному вызову dup2(), который закрывает файл, ассоциированный с файловым дескриптором 1 (т.е. стандартный вывод), и ассоциирует файловый дескриптор 1 с файлом, ассоциированным с дескриптором fd[1]. Таким образом, теперь через первый дескриптор стандартный вывод будет направляться в канал. После этого файловые дескрипторы fd[0] и fd[1] нам более не нужны, мы их закрываем, а в родительском процессе остается ассоциированным с каналом файловый дескриптор с номером 1. После этого происходит обращение к системному вызову execlp(), который запустит команду print, у которой выходная информация будет писаться в канал.
В дочернем процессе производятся аналогичные действия, только здесь идет работа со стандартным вводом, т.е. с нулевым файловым дескриптором. И в конце запускается команда wc, у которой входная информация будет поступать из канала. Тем самым мы запустили конвейер этих команд: синхронизация этих процессов будет происходит за счет реализованной в механизме неименованных каналов стратегии FIFO.
Пример. «Пинг-понг» (совместное использование сигналов и каналов). В данном примере рассматривается корректную организацию двунаправленной работы, когда каждый из взаимодействующих процессов могут и читать, и писать из канала.
Итак, пускай есть два процесса, которые через канал будут перекидывать «мячик»-счетчик, подсчитывающий количество своих бросков в канал, некоторое предопределенное число раз. Извещение процесса о получении управления (когда он может взять «мячик» из канала, увеличить его на 1 и снова бросить в канал) будет происходить на основе механизма сигналов.
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#define MAX_CNT 100
int target_pid, cnt;
int fd[2];
int status;
void SigHndlr(int s)
{
/* в обработчике сигнала происходит и чтение, и запись */
signal(SIGUSR1, SigHndlr);
if(cnt < MAX_CNT)
{
read(fd[0], &cnt, sizeof(int));
printf("%d\n", cnt);
cnt++;
write(fd[1], &cnt, sizeof(int));
/* посылаем сигнал второму: пора читать из канала */
kill(target_pid, SIGUSR1);
}
else if(target_pid == getppid())
{
/* условие окончания игры проверяется потомком */
printf("Child is going to be terminated\n");
close(fd[1]);
close(fd[0]);
/* завершается потомок */
exit(0);
}
else
kill(target_pid, SIGUSR1);
}
int main(int argc, char **argv)
{
/* организация канала */
pipe(fd);
/* установка обработчика сигнала для обоих процессов*/
signal(SIGUSR1, SigHndlr);
cnt = 0;
if(target_pid = fork())
{
/* Предку остается только ждать завершения
потомка */
wait(&status);
printf("Parent is going to be terminated\n");
close(fd[1]);
close(fd[0]);
return 0;
}
else
{
/* процесс-потомок узнает PID родителя */
target_pid = getppid();
/* потомок начинает пинг-понг */
write(fd[1], &cnt, sizeof(int));
kill(target_pid, SIGUSR1);
for(;;); /* бесконечный цикл */
}
}
Для синхронизации взаимодействующих процессов используется сигнал SIGUSR1. Обычно в операционных системах присутствуют сигналы, которые не ассоциированы с событиями, происходящими в системе, и которые процессы могут использовать по своему усмотрению. Количество таких пользовательских сигналов зависит от конкретной реализации. В приведенном примере реализован следующий принцип работы: процесс получает сигнал SIGUSR1, берет счетчик из канала, увеличивает его на 1 и снова помещает в канал, после чего посылает своему напарнику сигнал SIGUSR1. Далее действия повторяются, пока счетчик не возрастет до некоторой фиксированной величины MAX_CNT, после чего происходят завершения процессов.
В качестве счетчика в данной программе выступает целочисленная переменная cnt. Посмотрим на функцию обработчика сигнала SIGUSR. В ней проверяется, не превзошло ли значение cnt величины MAX_CNT. В этом случае из канала читается новое значение cnt, происходит печать нового значения, после этого увеличивается на 1 значение cnt, и оно помещается в канал, а напарнику посылается сигнал SIGUSR1 (посредством системного вызова kill()).
Если же значение cnt оказалось не меньше MAX_CNT, то начинаются действия по завершению процессов, при этом первым должен завершиться дочерний процесс. Для этого проверяется идентификатор процесса-напарника (target_pid) на равенство идентификатору родительского процесса (значению, возвращаемому системным вызовом getppid()). Если это так, то в данный момент управление находится у дочернего процесса, который и инициализирует завершение. Он печатает сообщение о своем завершении, закрывает дескрипторы, ассоциированные с каналом, и завершается посредством системного вызова exit(). Если же указанное условие ложно, то в данный момент управление находится у отцовского процесса, который сразу же передает его дочернему процессу, посылая сигнал SIGUSR1, при этом ничего не записывая в канал, поскольку у сына уже имеется значение переменной cnt.
В самой программе (функции main) происходит организация канала, установка обработчика сигнала SIGUSR1 и инициализация счетчика нулевым значением. Затем происходит обращение к системному вызову fork(), значение которого присваивается переменной целевого идентификатора target_pid. Если мы находимся в родительском процессе, то в этой переменной будет находиться идентификатор дочернего процесса. После этого отцовский процесс начинает ожидать завершения дочернего процесса посредством обращения к системному вызову wait(). Дождавшись завершения, отцовский процесс выводит сообщение о своем завершении, закрывает дескрипторы, ассоциированные с каналом, и завершается.
Если же системный вызов fork() возвращает нулевое значение, то это означает, что в данный момент мы находимся в дочернем процессе, поэтому первым делом переменной target_pid присваивается значение идентификатора родительского процесса посредством обращения к системному вызову getppid(). После чего процесс пишет в канал значение переменной cnt, посылает отцовскому процессу сигнал SIGUSR1, тем самым, начиная «игру», и входит в бесконечный цикл.
3.1.3Именованные каналы
Файловая система ОС Unix поддерживает некоторую совокупность файлов различных типов. Файловая система рассматривает каталоги как файлы специального типа каталог, обычные файлы, с которым мы имеем дело в нашей повседневной жизни, — как регулярные файлы, устройства, с которыми работает система, — как специальные файлы устройств. Точно так же файловая система ОС Unix поддерживает специальные файлы, которые называются FIFO-файлами (или именованными каналами). Файлы этого типа очень схожи с обыкновенными файлами (в них можно писать и из них можно читать информацию), за исключением того факта, что они организованы по стратегии FIFO (т.е. невозможны операции, связанные с перемещением файлового указателя).
Таким образом, файлы FIFO могут использоваться для организации взаимодействия процессов, при этом в отличие от неименованных каналов эти файлы могут существовать независимо от процессов, взаимодействующих через них. Эти файлы хранятся на внешних запоминающих устройствах, поэтому возможно открыть этот файл, записать в него информацию, а через любой промежуток времени (в течение которого допустимы перезагрузки системы) прочитать записанную информацию.
Для создания файлов FIFO в различных реализациях используются разные системные вызовы, одним из которых может являться mkfifo()1.
int mkfifo(char *pathname, mode_t mode);
Первым параметром является имя создаваемого файла, а второй параметр отвечает за флаги владения, права доступа и т.п.
После создания именованного канала любой процесс может установить с ним связь посредством системного вызова open(). При этом действуют следующие правила:
-
если процесс открывает FIFO-файл для чтения, он блокируется до тех пор, пока какой-либо процесс не откроет тот же канал на запись;
-
если процесс открывает FIFO-файл на запись, он будет заблокирован до тех пор, пока какой-либо процесс не откроет тот же канал на чтение;
-
процесс может избежать такого блокирования, указав в вызове open() специальный флаг (в разных версиях ОС он может иметь разное символьное обозначение — O_NONBLOCK или O_NDELAY). В этом случае в ситуациях, описанных выше, вызов open() сразу же вернет управление процессу.
Правила работы с именованными каналами, в частности, особенности операций чтения-записи, полностью аналогичны неименованным каналам.