Главная » Просмотр файлов » Лекции по операционным системам

Лекции по операционным системам (1114738), страница 22

Файл №1114738 Лекции по операционным системам (2014. Лекции (презентации)) 22 страницаЛекции по операционным системам (1114738) страница 222019-05-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 22)

up(&mutex);

}

}

Процесс-парикмахер первым делом опускает семафор customers, уменьшив тем самым количество ожидающих посетителей на 1. Если в комнате ожидания никого нет, то он «засыпает» в своем кресле, пока не появится клиент, который его разбудит. Затем парикмахер входит в критическую секцию, уменьшает счетчик ожидающих клиентов, поднимает семафор barbers, сигнализируя клиенту о своей готовности его обслужить, а потом выходит из критической секции. После описанных действий он начинает стричь волосы посетителю.

Посетитель парикмахерской входит в критическую секцию. Находясь в ней, он первым делом проверяет, есть ли свободные места в зале ожидания. Если нет, то он просто уходит (покидает критическую секцию, поднимая семафор mutex). Иначе он увеличивает счетчик ожидающих процессов и поднимает семафор customers. Если же этот посетитель является единственным в данный момент клиентом брадобрея, то он этим действием разбудит брадобрея. После этого он выходит из критической секции и «захватывает» брадобрея (опуская семафор barbers). Если же этот семафор опущен, то клиент будет дожидаться, когда брадобрей его поднимет, известив тем самым, что готов к работе. В конце клиент обслуживается (GetHaircut).

3Реализация межпроцессного взаимодействия в ОС Unix

3.1Базовые средства реализации взаимодействия процессов в ОС Unix

Сразу необходимо отметить, что во всех иллюстрациях организаций взаимодействия процессов будем рассматривать полновесные процессы, т.е. те «классические» процессы, которые представляются в виде обрабатываемой в системе программы, обладающей эксклюзивными правами на оперативную память, а также правами на некоторые дополнительные ресурсы.

Если посмотреть на проблемы взаимодействия процессов, то можно выделить две группы взаимодействия. Первая группа — это взаимодействие процессов, функционирующих под управлением одной ОС на одной локальной ЭВМ. Вторая группа взаимодействия — это взаимодействие в пределах сети. В зависимости от того, к какой группе относится тот или иной механизм, он будет обладать соответствующими свойствами и особенностями.

Рассмотрим взаимодействие в рамках локальной ЭВМ (одной ОС). Первым делом встает общая для обеих упомянутых групп проблема именования взаимодействующих процессов, которая заключается в ответе на вопрос, как, т.е. посредством каких механизмов, взаимодействующие процессы смогут «найти друг друга». В рамках взаимодействия внутри одной ОС можно выделить две основных группы решений данной задачи (Рис. 87.).

  1. Способы организации взаимодействия процессов.

Первая группа способов основана на взаимодействии родственных процессов. При взаимодействии родственных процессов, т.е. процессов, связанных некоторой иерархией родства, ОС обычно предоставляет возможность наследования некоторых характеристик родительских процессов дочерними процессами. И именно за счет наследования различных характеристик возможно реализовать то самое именование. К примеру, в ОС Unix можно передавать по наследству от отца сыну дескрипторы открытых файлов. В данном случае именование будет неявным, поскольку не указываются непосредственно имена процессов.

Другим решением в рамках данной группы взаимодействующих родственных процессов является взаимодействие по цепочке предок–потомок, причем известно, кто из процессов является предком, а кто — потомком. В этом случае существует возможность процессу-предку обращаться к своему потомку посредством явного именования. В качестве имени, например, может выступать идентификатор процесса (PID). А потомок, зная имя предка, может также к нему обратиться.

Так или иначе, но данная группа реализаций взаимодействия родственных процессов основана на том факте, что некоторая необходимая для взаимодействия информация может быть передана по наследству.

Следующая группа — это взаимодействие произвольных процессов в рамках одной локальной машины. Очевидно, что в этом случае отсутствует факт наследования, и поэтому для решения проблемы именования логично использовать следующие механизмы. Во-первых, прямое именование, когда процессы для указания своих партнеров по взаимодействию используют уникальные имена партнеров (например, используя идентификаторы процессов или же по-иному: PID привязывается к некоторому новому уникальному имени, и обращение при взаимодействии происходит с использованием системы этих новых имен). Во-вторых, это может быть взаимодействие посредством общего ресурса. Но в этом случае встает проблема именования этих общих ресурсов.

Итак, мы рассмотрели модели взаимодействия процессов в рамках локальной машины. ОС Unix предоставляет целый спектр механизмов взаимодействия по каждой из указанных групп. В частности, для взаимодействия родственных процессов могут быть использованы такие механизмы, как неименованные каналы и трассировка.

Неименованный канал — это некоторый ресурс, наследуемый сыновьями процессами, причем этот механизм может быть использован для организации взаимодействия произвольных родственников (т.е., условно говоря, можно организовать неименованный канал между «сыном» и его «племянником», и т.п.).

Неименованные каналы — это пример симметричного взаимодействия, т.е., несмотря на то, что ресурс неименованного канала передается по наследству, взаимодействующие процессы в общем случае, абстрагируясь от семантики программы, имеют идентичные права.

Другой моделью взаимодействия является несимметричная модель, которую иногда называют модель «главный–подчиненный» . В этом случае среди взаимодействующих процессов можно выделить процессы, имеющие больше полномочий, чем у остальных. Соответственно, у главного процесса (или процессов) есть целый спектр механизмов управления подчиненными процессами.

Для организации взаимодействия произвольных процессов система предоставляет целый спектр средств взаимодействия, среди которых преобладают средства симметричного взаимодействия (т.е. процессам при взаимодействии предоставляются равные права).

Именованные каналы — это ресурс, принадлежащий взаимодействующим процессам, посредством которого осуществляется взаимодействие. При этом не обязательно знать имена процессов-партнеров по взаимодействию.

Передача сигналов — это средство оказания воздействия одним процессом на другой процесс в общем случае (в частности, одним из процессов в этом виде взаимодействия может выступать процесс операционной системы). При этом используются непосредственные имена процессов.

Система IPC (Inter-Process Communication), предоставляющая взаимодействующим процессам общие разделяемые ресурсы, среди которых ниже будут рассмотрены общая память, массив семафоров и очередь сообщений, посредством которых осуществляется взаимодействие процессов. Отметим, что система IPC является некоторым альтернативным решением именованным каналам.

Аппарат сокетов — унифицированное средство организации взаимодействия. На сегодняшний момент сокеты — это не столько средства ОС Unix, сколько стандартизированные средства межмашинного взаимодействия. В аппарате сокетов именование осуществляется посредством связывания конкретного процесса (его идентификатора PID) с конкретным сокетом, через который и происходит взаимодействие.

Итак, мы перечислили некоторые средства взаимодействия процессов в рамках одной локальной машины (точнее сказать, в рамках ОС Unix), но это лишь малая часть существующих в настоящий момент средств организации взаимодействия.

Второй блок организации взаимодействия — это взаимодействие в пределах сети. В данном случае ставится задача организовать взаимодействие процессов, находящихся на разных машинах под управлением различных операционных систем. Та же проблема именования процессов в рамках сети решается достаточно просто.

Пускай у нас есть две машины, имеющие сетевые имена A и B, на которых работают соответственно процессы P1 и P2. Тогда, чтобы именовать процесс в сети, достаточно использовать связку «сетевой имя машины + имя процесса внутри этой машины». В нашем примере это будут пары (A–P1) и (B–P2).

Но тут встает следующая проблема. В рамках сети могут взаимодействовать машины, находящиеся под управлением операционных систем различного типа (т.е. в сети могут оказаться Windows-машины, FreeBSD-машины, Macintosh-машины и пр.). И система именования должна быть построена так, чтобы обеспечить возможность взаимодействия произвольных машин, т.е. это должно быть стандартизованным (унифицированным) средством. На сегодняшний день наиболее распространенными являются аппарат сокетов и система MPI.

Аппарат сокетов можно рассматривать как базовое средство организации взаимодействия. Этот механизм лежит на уровне протоколов взаимодействия. Он предполагает для обеспечения взаимодействия использование т.н. сокетов, и взаимодействие осуществляется между сокетами. Конкретная топология взаимодействующих процессов зависит от задачи (можно организовать общение одного сокета со многими, можно установить связь один–к–одному и т.д.). В конечном счете, именование сокетов также зависит от топологии: в одном случае необходимо знать точные имена взаимодействующих сокетов, в другом случае имена некоторых сокетов могут быть произвольными (например, в случае клиент–серверной архитектуры обычно имена клиентских сокетов могут быть любыми).

Система MPI (интерфейс передачи сообщений) также является достаточно распространенным средством организации взаимодействия в рамках сети. Эта система иллюстрирует механизм передачи сообщений, речь о котором шла выше (см. раздел 2.4.2). Система MPI может работать на локальной машине, в многопроцессорных системах с распределенной памятью (т.е. может работать в кластерных системах), в сети в целом (в частности, в т.н. GRID-системах).

Далее речь пойдет о конкретных средствах взаимодействия процессов (как в ОС Unix, так и в некоторых других).

3.1.1Сигналы

В ОС Unix присутствует т.н. аппарат сигналов, позволяющий одним процессам оказывать воздействия на другие процессы. Сигналы могут рассматриваться как средство уведомления процесса о некотором наступившем в системе событии. В некотором смысле аппарат сигналов имеет аналогию с аппаратом прерываний, поскольку последний есть также уведомление системы о том, что в ней произошло некоторое событие. Прерывание вызывает определенную детерминированную последовательность действий системы, точно так же приход сигнала в процесс вызывает в нем определенную последовательность действий.

Инициатором отправки сигнала процессу может быть как процесс или ОС. Для иллюстрации приведем следующий пример. Пускай в ходе выполнения некоторого процесса произошло деление на ноль, вследствие чего в системе происходит прерывание, управление передается операционной системе. ОС «видит», что это прерывание «деление на ноль», и отправляет сигнал процессу, в теле которого произошла данная ошибка. Дальше процесс реагирует на получение сигнала, но об этом чуть позже.

Инициатором посылки сигнала может выступать другой процесс. В качестве примера можно привести следующую ситуацию. Пользователь ОС Unix запустил некоторый процесс, который в некоторый момент времени зацикливается. Чтобы снять этот процесс со счета, пользователь может послать ему сигнал об уничтожении (например, нажав на клавиатуре комбинацию клавиш Ctrl+C, а это есть команда интерпретатору команд послать код сигнала SIGINT). В данном случае процесс интерпретатора команд пошлет сигнал пользовательскому процессу.

Аппарат сигналов является механизмом асинхронного взаимодействия, момент прихода сигнала процессу заранее неизвестен. Так же, как и аппарат прерываний, имеющий фиксированное количество различных прерываний, Unix-системы имеют фиксированный набор сигналов. Перечень сигналов, реализованных в конкретной операционной системе, обычно находится в файле signal.h. В этом файле перечисляется набор пар «имя сигнала — его целочисленное значение».

При получении процессом сигнала возможны 3 типа реакции на него. Во-первых, это обработка сигнала по умолчанию. В подавляющем большинстве случаев обработка сигнала по умолчанию означает завершение процесса. В этом случае системным кодом завершения процесса становится номер пришедшего сигнала.

Во-вторых, процесс может перехватывать обработку пришедшего сигнала. Если процесс получает сигнал, то вызывается функция, принадлежащая телу процесса, которая была специальным образом зарегистрирована в системе как обработчик сигнала. Следует отметить, что часть реализованных в ОС сигналов можно перехватывать, а часть сигналов перехватывать нельзя. Примером неперехватываемого сигнала может служить сигнал SIGKILL (код 9), предназначенный для безусловного уничтожения процесса. А упомянутый выше сигнал SIGINT (код 2) перехватить можно.

В-третьих, сигналы можно игнорировать, т.е. приход некоторых сигналов процесс может проигнорировать. Как и в случае с перехватываемыми сигналами, часть сигналов можно игнорировать (например, SIGINT), а часть — нет (например, SIGKILL).

Для отправки сигнала в ОС Unix имеется системный вызов kill().

#include <sys/types.h>

Характеристики

Тип файла
Документ
Размер
2,4 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее