Главная » Просмотр файлов » Антидемидович 4 - ТФКП

Антидемидович 4 - ТФКП (1113365), страница 17

Файл №1113365 Антидемидович 4 - ТФКП (Антидемидович) 17 страницаАнтидемидович 4 - ТФКП (1113365) страница 172019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 17)

и = Ке у, п = 1гп 1', у(г) = и(х, р) Е (н(х, у). Таким образом, изучение функций 1': С -ь С сводится к рассмотрению свойств двух числовых функций и и и двух независимых переменных х и у. В теории функций комплексного переменного биективное отображение области 6 С С на область Р С С С Р г принято называть одночастной функцией. Зго означает, что (х1 Е С, гг Е б д г~ Ф зг) ю ~(х~) Ф У(хг). Определение 1. Пусть э': С С и хь — пргдгльнал точка множества Рг. Число а Е С называется частичным пределам функции 1' а точке гь, если существует такал паглгдааательнасть (х„) точек множества РР чта (х„зо) гь (ьуп Е М г ф хо) Л ( Йп Г(х„) = о). (1) Множество всех частичных пределов функции У в точке, обозначим через Ег(хь).

Определение 2. Если множества ЕГ(хь) содержит лишь числа о, та ана называется пределам функции У в точке хь и обозначается сильаалам бга У( ). 'и Определение 3. Функция У называетсл непрерывной в точке зь Е Рю если !нп у(г„) = Э(зь) всякий раз, нак только х„ха д гн Е гч х„Е Р1. Если гр Е Р) и ЯвляетсЯ предельной точкой множества Рг, то 1 непрерыВна в точке х, тогда и только тогда, когда 1цп У(х) = э'(го). -ь В изолированной точке зь Е Рг каждая функция ( непрерывна.

Функция У, не являющаяся непрерывной в точке хь С Рг, называется разрывной в ней. Пусть гь Е Рг — предеяьная точка множества Р,. Она называется точкой устранимога разрыва щья функции У, если существует 1цп У(з) = о, о Е С и о х Г(зь). В этом случае ь функция (ь, определенная условиями Э(х), если "Е РГ)(га), )ь(х) = а при г= ь, непрерывна в точке хь. Иногда говорят: "функция э называется непрерывной в точке хю Е Рг, если ее приращение в этой точке бесконечно мало всякий раз, как только бесконечно мало приращение аргумента" В этой формулировке под бесконечно малым приращением аргумента понимают бесконечно малуиз последовательность (Ьз„) = ( „— хь), хь Е РР х„Е Рг тгп Е р(, а под приращением функции г подразумевают последовательность (гху(х„ д .)) = (Т(х + г1х.) - П ь)) = (Их.) - Т( )). в 2.

Топология комплексной плоскости 49 2.б. Арифметические операции нвд пределамн и непрерывными функциями. Теорема В Пусть функции У и д непрерывны в точке го б Ву и Во = ВГ. Тогда непрерывны в этой точке функции у 4 д, )' — д, Уд. Если дополнительно д(го) ф О, то функция г непрерывна а тачке го. и Пусть г„-о го и )гп б М г„б ВГ = Во. Тогда 1(г„) -+ у(го), д(г„) ч д(го) и, согласно теоремам о пределах последоватеяьностей, имеем йгп (г'(г„) кд(г„)) = г(го) ~ д(го), 1!пз !(г„)д(г„) = г (го)д(го) !нп 1(г ) г (го) д(г ) ' д(го) Согласно определению 3, и.

2.5, функции у т д, уд, с непрерывны в точке г,. > Теорема 2. Пусть г, — предельная тачка множества РГ Гз Во. Есои 1пп У(г) = а, )пп д(г) = )), та 1пп(у~д)(г) =атД !пп(!'д)(г) = а)). Если !) Ф О, та Ощ — (г) = —. ° Ф пусть (г„) — такая произвольная последовательность комплексных чисел, что г„- г, гч г, б Рг г! Р, ((го). тогда, согласно теоРемам о пРеделах последоватеаьностей, имеем Г' 1'Ч! а 1пп (Т( „) ад( „)) = ат 15, 1!гп (Уд)( „) = аД 11щ — (г„) = —.

!) Согласно определению 2, п. 2.5, указанные свойства равносильны утверждению, содержащемуся в теореме. и 2.7. Предел и непрерывность композиции функций. Теорема 2 (о непрерывности композиции функций). Пусть функция ! непрерывна в точке го б Ву, а фУнкЦил Зо непРеРывна а тачке (о б Р .

Если Зо((о) = го, та кампазиаиа У о Уо непрерывно в точке (о. и Утверждение является частным случаем теоремы 1, и.6.1, гл. 1. 1ь Справедливо ли аналогичное утверждение для композиции функций ) о уо, имеющих пределы в точках го и (о? Приводимый ниже пример лает отрицательный ответ на этот вопрос. Теоремы о пределе композиции, которые будут доказаны, требуют дополнительных ограничений, накладываемых на функции / и чо. Пример. Пусть у; С вЂ” + С, (о: С С, где ~ ~ г ~ ~ ~ ~~ ~ ~ ~ и ! ~ ~ ~ ~ и ! и~ ! ~~ ! 1, если а=О, 2 если (= — '(пбЩ з'(г) = ' , ' (а(() = О, есяи г б Сч(0), ( О, если ( (2 ( „-') и б (ц) .

( О, если (=-(пбЩ Тогда (лп Т(г) = О, )пп зо© = О. Вместе с тем (1 о зо) (() = 1 и о с о ) 1, если Ь'к(-'(нб(ц), Е,. ч (О) = (О, 1), т. е. Ощ (Т о уо) (() не существует. с-о Теорема 2 (о пределе композиции функций). Пусть (о — предельная точка множе- ства ВВ .

Если 11ш у(г) = а, Ищ р(й) = го и суи(естаует такая окрестность ОП тачки (о, *о с и чта У( б (Ог П РВ Й(~о) Зо(() ф го, та Игп (у о)о)(() = а. м пУсть ((„) — такая последовательность, что („(о и кп б и („б Вг, '1((о). тогла = )о(Й) го Л г б ВУ'ч(го) Поэтому у(г„) = (у о р) К„) ч а при и оо. Согласно определению, !!щ (у о зо) (С) = а с со Гл. 2.

комплексные числа н фуивзваи комплексного переменного 50 Теорема 3. Пусть (ь — предельная тачка мнозкества Вг, . Есеи йш (о(б) = хь и Функция 1 с са непрерывна в точке зь, то Вш (1 о (о) (О = 1(зь). с-с. ч Полагаем / )о((), если Г б Вв'!(ьь), "© 1 зь при С=Се. Функция уз* непрерывна в точке бь. Согласно теореме 1, функция 1 ь ы* непрерывная в этой точке. Поэтому йш (у ь !о) (() = йп! (у ь ы ) (() — (1 ь )ь*)(гь) = 1(вь)' с о с-сь 2,8.

Свойства фупкппй, непрерывных на компаате. Теорема 1(о непрерывном образе компакта). Пусть 1: С вЂ” С вЂ” непрерывная функ- ция и Ру — компакт. Тогда многкество Ег компактное в себе, т. е, непрерывный образ компакта есть компакт. Ч Утверждение является частным случаем теоремы п. 6.1, гл. 1. И Определение. Функция 1; С -ь С называется ограниченной на мноэсестве Рг„есеи существует такое число М б 1х, что Уг б Рг !1(с)~ ( М. уеарема 2 (Вейерштрасса).

Пусть 1: С -ь С вЂ” непрерывная функция и Ру — компакт. Тогда функция 1 ограниченная, а ее модуль дктигает на мнонсестве Рг своих наибольшего и наи- меньшего значении. ч Согласно теореме 1, мнозкество Ег яющется компактом, т.е. замкнутым ограниченным множеством. По определению 5 (см. п. 3.2, гл. 1) его диаметр д(Е1) = зцр р( п, сез) ~елг, генг есп конечное число, т. е.

д(Е1) б В. Согласно следствию из теоремы и. 3.2, гл. 1, Уюь б С мнозке- СТВО Еу СОДЕРжИтСЯ В ЗаМКНУтОМ ШаРЕ 0„(шь), ГДЕ Г = ПК Р(твь, Ьв) Ьд(Е1). ВЗЯВ Шь = О, ПОЛУ- ее! чнм, по множество Ег содержится в некотором замю!)том шаре конечною радиуса 12 с центром в начале координат. Поэтому )гх б Вг !ю~ = !1(г)~ < Е, т. е. функция 1 ограничена. Отожле- ствим комплексную плоскость С с плоскостью К'. Тогда непрерывная ограниченная функция Щ принимает на замкнутом ограниченном множестве Вг С К' свои наибольшее и наименьшее зна- чения, согласно теореме Вейерштрасса для непрерывной функции (о: К К.

Следовательно, существуют такие точки з! б Ву, гз б Рг что '!у(х!)~ = '"1 11(хП, !1(гз)! = з"Р !1(хН " *епг епг Чг б Вг выполняются неРавенства )1(х!)( ч ~1(зИ ч )1(хзй, и Звмечавве. при определении непрерывной функции у в точке хь предполагали, что у(гь) гь сс, при изучении отображений множеств с помощью аналитических функций целесообразно огкьзьться ог этого ограничения и считать функцию у непрерывной е точке хь, где у(хь) = сс, если !ип у(х) = со.

В этом *ь — )в случае функцию У называют обобщенно-ненрерыеноа например, функция С С, где если г б Сг(0, сс), 1(х)= 0 лри х =со, со лрн с=О, обобщенно-непрерывная в плоскости С. дья нее йщ у(х) = 0 = у(сс), йщ у(г) = со = у(0). 9 3. Непрерывные и гладкие кривые. Односвязные и многосвязные области В курсе математического анализа рассматривается понатие проитодной вектор ягуикции у: К-+В, Вг =(а, Ц, где 1=(уп уз, ", у ) — упорялоченный набор функций 11 (у = 1, пь).

53. Непрерывные н гладкие кривые. Односвязные и многосвюиые области 5( Вектор-функция у ди<6<йеренцируема на сегменте [а, Ь[ тогда и только тогда, когда на нем диффеРенциРУемы фУнкции У<, и пРи этом ч1 Е [а, Ь] У'(1) = (У'<(1), Уз~(1),, У~ (1)) (в точках а и Ь гчп<+Ьг< речь идет об односторонних производных). Отображение [а, Ь[ — + С можно рассматривать как вектор-Функцию )р = ((р<, урэ) С м~.

Тогда, если функции ур< и (оэ дифференцируемы на сегменте [а, Ь], фУнкциЯ (о также диффеРенциРУема и ч1 Е [а, Ь[ УР (1) = УР, < Ц Ч-(УР<(1) = (УР <(1), Уэз(1)). Определение Е Множеапео у С С (ияи т С м~) называется непрерывной кривой (т раенторией), если существует непрерывное отображение [а, Ц т. ]Три этом отображение ур на называется параметрическим представлением кривой у. Из курса математического анализа известно, что отобрюкение ур = (уч, урэ) непрерывно тогда и только тогда, когда функции р< и (рз непрерывны. Для каждой непрерывной кривой у фиксируется одно из двух взаимно противоположных направлений движения подвижной точки 1 Е [а, Ь], соответствуюшее возрастанию или убыванию параметра. В первом слГ<ае ур(а) есть начало, у<(6) — конец кривой, а во втором случае зти точки меняются местами. Кривая, начальная и конечная точки которой совпадают, называется замкнутой.

Характеристики

Тип файла
DJVU-файл
Размер
3,53 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее