Антидемидович 4 - ТФКП (1113365), страница 14
Текст из файла (страница 14)
г) Поскольку 1ш г = у, то, записав данное неравенство в виде у < с, приходим к выводу, что ему удовжтворяют все точки полуплоскости, расположенной снизу от прямой у = с. ° . Гл. 2. Комплексные числа в )Ууикции комплексвого переменного 3 г). Выяснить геометрический смысл неравенств а) а < агйг <)3; б) а< агу(г — го) <)3 ( — )г < а <)3 ~< я). м а) Уравнение агу г = а задает луч, наклоненный к действительной оси под углом а. Неравенства а ( агйг < )3 задают бесконечный сектор, заключенный мехгду лучами агвг = а и агу г = )3, причем сами лучи исключаются.
б) Перенесем начало координат в точку г,, полыая г — го — — ю. Неравенства а ( агу м < )3 зздают внутренность такого же сектора с вершиной в точке го. М 38. Выяснить геометрический смысл следующих соотношений. а) ~г( = Кеа+ 1; б) Кег+ !гпг < 1; в) 1гп =О, Ке =О, г)1г — 1~>2~г — г~; г — гт г — гг Д) 1г) ( Р, 3) Е Агу г, 0 ~ (у) ( 2х; е) )4 < у), 3) 0 Агу г, 0 < (о ( 2я. х+ — + у — — <-.
Множество точек плоскости С, определяемое этим неравенством, есть замкнугый круг радиуса — с центром в точке го — — — — + —,. 1г 1 .4 д) Пусть!г( = г. Кривая, уравнение которой г = (о, называется слирсгою Архимеда. Поскольку 0 < у) < 2х, то речь идет об одном витке этой спирали. Данному неравенству г < 3) удовлетворяет множество внутренних точек плоскости С, ограниченное сегментом О < х < 2х действительной оси и од!им витком спирали Архимеда. е) Неравенство определяет множество из предыдущего примера, дополненное интервалом (О, 2ог) действительной оси.
М 39. Определить семейства линий в плоскости С, заданных уравнениями: 1 1 а) Ке — = с, 1пт — = с (-оо < с <+со); г г б) Ке г' = с, 1п) го = с ( — со < с ( +со); в) =Л(Л>0); г — гг~ г — г) г) агу — = а (-)г < а ( я.). г — гг семейство окружностей (х — взт) + у' = г, гле Ке —,' — о1гп —,. равенство -т-р = с опрелеляет с, = —,, с т- О, касаюппохся в начале координат ) м а) пусть г = х + )у, тогда 14 = з/х)-ь у', ке г + 1 = х + 1 и исследуемое равенство принимает вид Ь/х) + у' = х Ч 1, После возведения в квалрат обеих частей последнего равенства получим у' = 2х + 1.
Это уравнение параболы с вершиной в точке (-1, 0), для которой луч 7 = ! (х, У) 6 К ~х > — —,', У = 0 3 является осью симметрии. б) Неравенство запишем в виде х + у < 1. Множество точек плоскости С, удовлетворяющих этому неравенству — полуплоскость, ограниченная прямой, уравнение которой х+у = 1. Начало координат принадлежит этой полуплоскости. в) Поскольку -*;-*;" = -*-:-"-)(созу) Ь)яп(о), у) б Агл-"; — *-", (о = 3)) — у)т, 3)) Е Агу(г — г)), )р) Е Агу(г — г,), то в первом случае имеем з!ну) = О, О)) — рт = й)г, а во втором — соз3) = О, (о) — (от — — —" + 2йя. В первом случае векторы г — г) и г — г, лежат на прямой, проходящей через точки г, и гт (исключая последнюю), во втором случае угол между этими векторами с точностью до кратного 2х равен х-).
Поэтому множество Ке -';-';" = 0 является окружностью, диаметром которой служит отрезок, соединяющий точки г, и г, (при этом из окрухоюсти удалена точка г,). )о = ' .т ) — ь ~) (( — ))).*.*. ') — ))'+ 'о) )*' ) — ))'. Возведя обе части полученного неравенства в квадрат, после несложных преобразований находим: Ф 1. Комплексные числа и комплекспвя плоскость 41 мнимой оси. Если с = О, то х = О, т.е. семейство вклзочает в себя и мнимую ось. Равенз ство -р~~ = с определяет семейство окружное~ей х + (у+ -',з) = з, где с, = —,, с ~ О, касающихся действительной оси в начале координат, и включает в себя также действительную ось, поскольку при с = 0 у =О. б) Пусть * = х -ь зу, тогда зз = х — уз 4 з2ху, Ке аз = х' — уз, (таз = 2ху.
Если с Х О, то уравнения х — у = с и 2ху = с определяют семейства гипербож Если с = О, то уравнение х — у = 0 определяет пару прямых у = х и у = -х, а уравнение ху = 0 — пару прямых х = 0 2 3 и у=О. в) Пусть х = х + зу, х, = х, 4 зуз, хз = хз 4 зуз. Тогда равенство ! — ':*-з = Л (Л > 0) -з равносильно такому: (х — х,) + (у — у,)' = Л' ((х — х,)' ч- (у — у,)') . Каждая кривая — окруж- ность, являюшаяся геометрическим местом точек, отношение расстояний которых от точек х, и гз посюянно (охрулсность Алоллонол относительно точек зз и сз).
г) Поскольку агу -*:-=' = агу(х — х,) — агу(з — х,) = а, -я < а < я, то это равенство определяет семейство дуг окружностей с концами в точках х, и х, (угол между векторами з — хз и г — хз равен а), В это семейство входит конечный отрезок с концами в точках хз и х, (при а = хя) и бесконечный отрезок, содержащий бесконечно удаленную точку (при а = 0). м 40. Какие необходимые и достаточные условия того, чтобы уравнение х'+ 2ас + Ь = О с комплексными коэффициентами а и Ь имело: 1) действительные корни; 2) чисто мнимыс корни; 3) комплекснозначные корни.
м 1) Необходимость. Пусть х, и хз — действительные корни. Тогда по теореме Виста зз+ з=-2а, х~зз=Ь, аЕК, ЬЕК, 3 4а = зз-1- з,'-1-2Ь > 2;Яг~)-' + 2Ь > 4Ь, а" > Ь. Достаточность. Пусть а б К, Ь б К и а > Ь. Тогда нз формулы для нахождения корней з, з = — а х ч'а' — Ь следует, что х~ и сз — действительные числа, 2) Необходимость. Пусть х, и с, — чисто мнимые. Тогда из формул Виста следует, что а — чисто мнимое, Ь вЂ” действительное.
Поэтому 4а = з,'+хзз+ 2Ь < -2)Ь|+ 2Ь < 4Ь, откуда Ь>а. Достаточность. Если Ь > а' и а — чисто мнимое число, то из формулы для нахождения корней уравнения следует, что оба они чисто мнимые. 3) Уравнение второго порядка всегда имеет два комплексных корня. М 41. При каких значениях а корни уравнения х' 4 12 (1 4 зззЗ) с + а = 0 лежат на олной прямой? м Пусть корни этого уравнения з,, х,, зз лежат на одной прямой.
Тогда л, — х, = Ь(зз — з,), Ь = сопи, й Е К. По теореме Виста е, + зз + хз —— О, откупа с, = -хз — зз, Подставив х~ в равенство сз — х, = Ь(зз — х,), получим -*з = ~~,' = /сз, Ьз Е К. Следовательно, 1гп =" = О, откуда хзу, — хзуз — — О, у, = вз хз. Взяв вместо точки (хз, уз) любую точку (х, у) на прямой, получим прямую у = ах, а = ш, проходяшую через начало координат. Поэтому имеем *в в в хз = х,с*, с, = хзе', сз = х,с', где х; > О (3' = 1, 2, 3) По формулам Виста получаем р = О, дс™ = 24е'з, гсз = а, тле р = -(х, +хз+ хз), о = х,х, + х,хз+хзх,, г = — х,хзхз.
Поскольку х, — действительные числа, то уравнение х +рх +ох+г=х +ох+г=О имеет три действительных корня. Из формул Кардано следует, что коэффициенты а и г должны уловлетворять условию Отсюда заключаем, что а < О. Из второй формулы Виста имеем а = -24, ез'в = -сз з . Поскольку з)6( — з, з),тос* =(-!)сзз =е( з) =е зз,ЗО=-зг, Гл 2. Комплексные числа и функции комплексного переменного Согласно третьей формуле Виста г = — а, а Е К. Из неравенства (!) при о = -24, г = -а получаем, что а' < 2", т.
е. (а( < 32ъ~2. ° . 42. Найти все корни уравнения (х+а)" = х" (и Е (й(). Доказать, что если а — действительное число, то все корни хй лехсат на прямой, параллельной мнимой оси. м Уравнение эквивалентно при х Ф 0 уравнению !" =- 1, где ! = — *+, . Следовательно, ,йй гй = е* (й = О, п — 1). При й = О !е — — 1, что невозможно, поскольку з+ а ~ х, если а ~ О, Переходя от ! к е, получим 1 1 1 — (соз — — (пп — ) а (! — соз — +!н!и — ) зй, и г 2йг . Зй й хй=-а — = — а зй = — а гй l 2й 1 — !й ! — 2 — 2соз— 2 !1 — соз — ) — е' а 3!и — + (5!и — соз — а ( йх — — = — — ( 1+ ! с!я — / (й = 1, и — 1) 2 з)лзй 2 ~ и( Если а б К, то Ке ай — — — —,, т.
е. все корни лежат на прямой, параллельной мнимой оси, м 1 — й 43. Каковы на сфере Римана образы точек: 1) в = 1; 2) х = -1; 3) х = й; 4) х = —. ъ'2 м Воспользуемся формулами (3), п.1.3: ( = .ф!т, О =;Др, Г = —,, В примере речь идет об образах точек х, = (1, 0), хз —— ( — 1, 0), з, = (О, 1), з, = (+, — +) . Обозначив образы точек гч соответственно через Я, (! = 1, 4), получим: г,= —,о,—, г,= -),о,—, г,= о,—,—, г,= Все четыре точки лежат на экваторе, долготы их соотнезственно раним О, х, — ', — — "„.
М 44. Найти на сфере Римана образы: а) лучей агйх = а; б) окружностей ч = (х б С: (х! = г). м а) Если точка х Е С принадлежит лучу агй х = а, то соответствующая ей точка Я = (Г. О, Г) имеет свойство: главным значением агх(Г+ ей) является а. Поэтому точка Я принадлежит полу- меридиану, отвеча!ошему углу а. Справедливо и обратное Следовательно, образом лу йа агй з = а прн стереографической проекции является пачумеридиан, отвечающий углу а, исключая северный и южный полюсы.
б) Пусть х б С н !х~ = г. Тогда для соответствующей золян Я Е 5, Я = (Г, О, Г), по формулам (3), п.1.3, получаем, что Г = —," ... Поэтому все точки В лежат на окружности, вырезаемой из сферы 5 плоскостью, )равнение которой Г = — '--г. Справедливо и обратное угнерждение: из м 1 тех же формул (3) следует, что если ( = —,',, то дяя соответствуюшего х имеем (х( = г. Следовательно, образом окр)экностн Т при стереографнческой проекции является окружность сферы о, ,г лежащая н плоскости Г = —,', .