19 (1106256)

Файл №1106256 19 (Лекции 2013-го года)19 (1106256)2019-04-24СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Курс «Алгоритмы и алгоритмические языки»1 семестр 2013/2014Лекция 191Двоичные деревья поискаПроблема: организовать хранилище данных, которое позволяетхранить большие объемы данных и предоставляет возможностьбыстро находить и модифицировать данные.Хранилище данных обеспечивает пользователю интерфейс, вкотором определены словарные операции: search (найти, иногданазывается fetch), insert (вставить) и delete (удалить).Варианты решения – деревья поиска, хешированиеДвоичное дерево – набор узлов, который:либо пуст (пустое дерево),либо разбит на три непересекающиеся части:узел, называемый корнем,двоичное дерево, называемое левым поддеревом, идвоичное дерево, называемое правым поддеревом.Двоичное дерево не является частным случаем обычногодерева, хотя у этих структур много общего.

Основные отличия:(1)Пустое дерево является двоичным деревом, но неявляется обычным деревом.(2)Двоичные деревья (A(B,NULL)) и (A(NULL,B))2различны, а обычные деревья – одинаковы.Двоичные деревья поискаСтруктура для представления узла двоичного дерева поиска:struct BT_node {int key;struct BT_node *left;struct BT_node *right;struct BT_node *parent;}Ключи в двоичном дереве поиска хранятся с соблюдениемсвойства упорядоченности:Пусть x – произвольный узел двоичного дерева поиска.Если узел y принадлежит левому поддереву, тоkey[y] < key[x],если y находится в правом поддереве узла x, тоkey[y] > key[x].3Двоичные деревья поиска: поиск узлаНа входе: искомый ключ k и указатель root на корень поддерева,в котором производится поиск.На выходе: указатель на узел с ключом key (если такой узелесть), либо пустой указатель NULL.struct BT_node *Btsearch (struct BT_node *root, int k){if (! root || root->key == k)return root;if (k < root->key)return Btsearch (root->left, k);elsereturn Btsearch (root->right, k);}4Двоичные деревья поиска: поиск узлаИтеративная версия поиска.struct BT_node *Btsearch (struct BT_node *root, int k){struct BT_node *p = root;while (p && p->key != k)if (k < p->key)p = p->left;elsep = p->right;return p;}Среднее время поиска O(h), где h – высота дерева.5Двоичные деревья поиска: минимум и максимумНа входе: указатель root на корень поддерева.На выходе: указатель на узел с минимальным ключом k.struct BT_node *Btmin (struct BT_node *root){struct BT_node *p = root;while (p->left)p = p->left;return p;}Среднее время выполнения O(h), где h – высота дерева.6Двоичные деревья поиска: следующий элементНа входе: указатель node на узел дерева.На выходе: указатель на следующий за node узел дерева.struct BT_node *Btsucc (struct BT_node *node) {struct BT_node *p = node, *q;/* I случай: правое поддерево узла не пусто */if (p->right)return Btmin (p->right);/* II случай: правое поддерево узла пусто,идем по родителям до тех пор, пока не найдемродителя, для которого наше поддерево левое */q = p->parent;while (q && p == q->right) {p = q;q = q->parent;}return q;}Среднее время выполнения O(h), где h – высота дерева.7Двоичные деревья поиска: вставкаНа входе: указатель root на корень дерева и указатель node нановый узел, у которого есть значение ключа, а все поля суказателями имеют значение NULL.void Btinsert (struct BT_node *root,struct BT_node *node) {struct BT_node *p, *q;p = root, q = NULL;while (p) {q = p;p = (node->key < p->key) ? p->left : p->right;}node->parent = q;/* подвешиваем node к корню, к q слева или к q справа */if (q == NULL)root = node;else if (node->key < q->key)q->left = node;elseq->right = node;8}Двоичные деревья поиска: вставкаНа входе: указатель root на корень дерева и указатель node нановый узел, у которого есть значение ключа, а все поля суказателями имеют значение NULL.struct BT_node * Btinsert (struct BT_node *root,struct BT_node *node) {struct BT_node *p, *q;p = root, q = NULL;while (p) {q = p;p = (node->key < p->key) ? p->left : p->right;}node->parent = q;if (q == NULL)root = node;else if (node->key < q->key)q->left = node;elseq->right = node;return root;}9Двоичные деревья поиска: удалениеНа входе: указатель на корень root дерева T иуказатель на узел n дерева T.На выходе: двоичное дерево T с удаленным узлом n(ключи нового дерева по-прежнему упорядочены).Необходимо рассмотреть три случая: (1) у узла n нет детей(листовой узел); (2) у узла n только один ребенок;(3) у узла n два ребенка.(1) просто удаляем узел n;(2) вырезаем узел n, соединив единственного ребенкаузла n с родителем узла n.(3) находим succ(n) и удаляем его, поместив ключsucc(n) в узел n.10Двоичные деревья поиска: удалениеШаг 1: если у n меньше двух детей, удаляем n, иначе удаляемsucc(n); устанавливаем указатель y на удаляемый узел.Шаг 2: находим ребенка удаляемого узла (ребенка либо нет,либо он единственный) и устанавливаем на него указатель x.Шаг 3: подвешиваем ребенка y (указатель x) к родителю y;если у y нет родителя, новым корнем дерева становится x;устанавливаем в соответствующем поле родителя указатель наx, полностью исключая y из дерева.Шаг 4: если удаляемый узел succ(n), заменяем данные узла n наданные узла succ(n).11Двоичные деревья поиска: удалениеstruct BT_node * BTdelete (struct BT_node **root,struct BT_node *n) {struct BT_node *x, *y;/* Шаг 1: y – указатель на удаляемый узел n */y = (! n->left || ! n->right) ? n : BT_succ (n);/* Шаг 2: x – указатель на ребенка y, либо NULL */x = y->left ? y->left : y->right;/* Шаг 3: если x – ребенок y, вырезаем y из родителей */if (x)x->parent = y->parent;/* Шаг 3: если у y нет родителя, новым корнем дерева становится x */if (! y->parent)*root = x;else {/* Шаг 3: x присоединяется к y->parent с требуемой стороны */if (y == y->parent->left)y->parent->left = x;elsey->parent->right = x;}<...>12Двоичные деревья поиска: удалениеstruct BT_node * BTdelete (struct BT_node **root,struct BT_node *n) {struct BT_node *x, *y;<...>/* Шаг 4: если удалялся не узел n, а succ(n), необходимозаменить данные узла n на данные узла succ(n) */if (y != n)n->key = y->key;/* функция возвращает указатель удаленного узла, чтодает возможность использовать этот узел в другихструктурах, либо очистить занимаемую им память */return y;}Среднее время выполнения O(h), где h – высота дерева.13Построение двоичного дерева поиска.Постановка задачи.

Пусть имеется множество K из m ключей:K = {k0, k1, …, km-1}Разбиение K на три подмножества K1, K2, K3:|K2 | = 1, |K1| ≥ 0, |K3| ≥ 0.K2 = {k} ⇒ ∀l∈ K1: l < k и ∀r∈ K3: r ≥ kДалее по рекурсии: разбиваемK1 на K11, K12, K13K3 на K31, K32, K33и т.д. пока ключи не кончатсяПример:K = {15,10,1,3,8,12,4}.Первое разбиение: {1,3,4}, {8}, {15,10,12};второе разбиение: {{1}{3}{4}}{8}{{10}{12}{15}}.Получилось полностью сбалансированное двоичное дерево.Определение. Дерево называется полностьюсбалансированным (совершенным), если длина пути от корнядо любой листовой вершины одинакова.14Построение двоичного дерева поиска.Пусть h – высота полностью сбалансированного двоичногодерева. Тогда число вершин m должно быть равно:m = 1 + 2 + 22 + … + 2h-1 = 2h – 1откуда h = log2(m + 1).Если все m ключей известны заранее, их можно отсортироватьза O(m⋅log2m), после чего построение сбалансированногодерева будет тривиальной задачей.Если дерево строится по мере поступления ключей,то возможны все варианты: от линейного дерева с высотой O(m)до полностью сбалансированного дерева с высотой O(log2m).Пусть T = {root, left, right} – двоичное дерево; тогдаhT = max(hleft, hright) + 1.15Деревья ФибоначчиЧисла Фибоначчи возникли в решении задачи о кроликах,предложенном в XIII веке Леонардо из Пизы, известным какФибоначчи.Задача о кроликах: пара новорожденных кроликов помещенана остров.

Каждый месяц любая пара дает приплод – также парукроликов.Пара начинает давать приплод в возрасте двух месяцев.Сколько кроликов будет на острове в конце n-го месяца?В конце первого и второго месяцев на острове будет одна паракроликов:f1 = 1, f2 = 1.В конце третьего месяца родится новая пара, так чтоf3 = f2 + f1 = 2.По индукции можно доказать, что для n ≥ 3fn = fn-1 + fn-2.16Деревья Фибоначчиn-е число Фибоначчи вычисляет следующая функция:int Fbn (int n) {if (n == 1 || n == 2)return 1;else {int g, h, k, Fb;g = h = 1;for (k = 2; k < n; k++) {Fb = g + h;h = g;g = Fb;}return Fb;}}17Деревья ФибоначчиОпределение дерева Фибоначчи(это тоже искусственное дерево).(1)(2)Пустое дерево – это дерево Фибоначчи с высотой h = 0.Двоичное дерево, левое и правое поддерево которогоесть деревья Фибоначчи с высотами соответственноh – 1 и h – 2 (либо h – 2 и h – 1), есть деревоФибоначчи с высотой h.Из определения следует, что в дереве Фибоначчизначения высот левого и правого поддерева отличаютсяровно на 1.18Деревья ФибоначчиПример.

Характеристики

Тип файла
PDF-файл
Размер
206,7 Kb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6363
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее