Структурно-функциональные исследования дрожжевой оксидазы D-аминокислот методом рационального дизайна (1105750), страница 40
Текст из файла (страница 40)
// Nat. Biotechnol. 2004. Vol. 22. P. 455–458.139. Hawkes T., Pline-Srnic W., Dale R. D-glufosinate as a male sterility agent forhybrid seed production // Plant Biotechnol. J. 2011. Vol. 9. P. 301–314.140. Pedotti M., Rosini E, Molla G. Glyphosate resistance by engineering theflavoenzyme glycine oxidase. // J. Biol.
Chem. 2009. Vol. 284. P. 36415–36423.141. Miyano M., Fukui K., Watanabe F. Studies on Phe-228 and Leu-307 recombinantmutants of porcine kidney D-amino acid oxidase: expression, purification, andcharacterization. // J. Biochem. 1991. Vol. 109, № 1. P. 171–177.142. Pollegioni L., Fukui K., Massey V.
Studies on the kinetic mechanism of pig kidneyD-amino acid oxidase by site-directed mutagenesis of tyrosine 224 and tyrosine228. // J. Biol. Chem. 1994. Vol. 269, № 50. P. 31666–31673.242143. Bakke M., Setoyama C., Miura R., Kajiyama N. Thermostabilization of porcinekidney D-amino acid oxidase by a single amino acid substitution. // Biotechnol.Bioeng. 2006.
Vol. 93, № 5. P. 1023–1027.144. Setoyama C., Nishina Y., Mizutani H. Engineering the substrate specificity ofporcine kidney D-amino acid oxidase by mutagenesis of the “active-site lid”. // J.Biochem. 2006. Vol. 139, № 5. P. 873–879.145. RaibekasA., Fukui K., Massey V. Design and properties of human D-amino acidoxidase with covalently attached flavin. // Proc. Natl. Acad.
Sci. U. S. A. 2000.Vol. 97, № 7. P. 3089–3093.146. Campaner S., Pollegioni L., Ross B.D., Pilone M.S. Limited proteolysis and sitedirected mutagenesis reveal the origin of microheterogeneity in Rhodotorulagracilis D-amino acid oxidase. // Biochem. J. 1998. Vol. 330 ( Pt 2. P. 615–621.147. Khang Y.-H., Kim I.-W., Hah Y.-R., Hwangbo J.-H., Kang K.-K. Fusion protein ofVitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stabilityof biocatalyst in the bioconversion process of cephalosporin C. // Biotechnol.Bioeng. 2003. Vol. 82, № 4. P. 480–488.148. Wang S.-J., Yu C.-Y., Lee C.-K., Chern M.-K., Kuan I.-C. Subunit fusion of twoyeast D-amino acid oxidases enhances their thermostability and resistance toH2O2. // Biotechnol. Lett.
2008. Vol. 30, № 8. P. 1415–1422.149. Boselli A., Piubelli L., Molla G., Pilone M.S., Pollegioni L., Sacchi S.Investigating the role of active site residues of Rhodotorula gracilis D-amino acidoxidase on its substrate specificity. // Biochimie. 2007. Vol. 89, № 3. P. 360–368.150. Harris C.M., Molla G., Pilone M.S., Pollegioni L. Studies on the reactionmechanism of Rhodotorula gracilis D-amino-acid oxidase. Role of the highlyconserved Tyr-223 on substrate binding and catalysis.
// J. Biol. Chem. 1999. Vol.274, № 51. P. 36233–36240.151. Molla G., Porrini D., Job V., Pollegioni L. Role of arginine 285 in the active site ofRhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study. // J.Biol. Chem. 2000. Vol. 275. P.
24715–24721.152. Pollegioni L., Harris C.M., Molla G., Pilone M.S., Ghisla S. Identification and roleof ionizing functional groups at the active center of Rhodotorula gracilis D-aminoacid oxidase // FEBS Lett. 2001. Vol. 507. P. 323–326.153. Boselli A., Sacchi S., Job V., Pilone M.S., Pollegioni L. Role of tyrosine 238 in theactive site of Rhodotorula gracilis D -amino acid oxidase A site-directedmutagenesis study. 2002.
Vol. 4771. P. 4762–4771.154. Boselli A., Piubelli L., Molla G. On the mechanism of Rhodotorula gracilis Damino acid oxidase: role of the active site serine 335. // Biochim. Biophys. Acta.2004. Vol. 1702, № 1. P. 19–32.243155. Caldinelli L., Molla G., Pilone M.S., Pollegioni L. Tryptophan 243 affectsinterprotein contacts, cofactor binding and stability in D-amino acid oxidase fromRhodotorula gracilis. // FEBS J. 2006.
Vol. 273, № 3. P. 504–512.156. Ju S.S., Lin L.L., Wang W.C., Hsu W.H. A conserved aspartate is essential forFAD binding and catalysis in the D-amino acid oxidase from Trigonopsisvariabilis. // FEBS Lett. 1998. Vol. 436, № 1. P. 119–122.157. Lin L.L., Wang W.C., Ju S.S., Chien H.R., Hsu W.H. The role of a conservedhistidine residue, His324, in Trigonopsis variabilis D-amino acid oxidase.
// FEMSMicrobiol. Lett. 1999. Vol. 176, № 2. P. 443–448.158. Lin L., Chien H., Wang W., Hwang T., Fu H., Hsu W.. Expression of Trigonopsisvariabilis D-amino acid oxidase gene in Escherichia coli and characterization of itsinactive mutants. // Enzyme Microb. Technol.
2000. Vol. 27, № 7. P. 482–491.159. Yu H., Ma X., Luo H., Wen C., Shen Z. Fusion expression of D-amino acidoxidase from Trignoposis variabilis with maltose binding protein and Vitreoscillahemoglobin. // Sheng Wu Gong Cheng Xue Bao. 2008. Vol. 24, № 6. P. 1004–1009.160. Mueller M., Kratzer R., Schiller M. The role of Cys108 in Trigonopsis variabilis damino acid oxidase examined through chemical oxidation studies and pointmutations C108S and C108D. // Biochim. Biophys. Acta.
Elsevier B.V., 2010. Vol.1804, № 7. P. 1483–1491.161. Wong K.-S., Fong W.-P., Tsang P.W.-K.. A single Phe54Tyr substitution improvesthe catalytic activity and thermostability of Trigonopsis variabilis D-amino acidoxidase. // N. Biotechnol. Elsevier B.V., 2010. Vol. 27, № 1. P. 78–84.162. Setoyama C., Nishina Y., Tamaoki H. Effects of hydrogen bonds in associationwith flavin and substrate in flavoenzyme d-amino acid oxidase.
The catalytic andstructural roles of Gly313 and Thr317. // J. Biochem. 2002. Vol. 131, № 1. P. 59–69.163. Alekseeva A.A., Serenko A.A., Kargov I.S., Savin S.S., Kleymenov S.Y., TishkovV.I. Engineering catalytic properties and thermal stability of plant formatedehydrogenase by single-point mutations. // Protein Eng. Des.
Sel. PEDS. 2012.Vol. 25. P. 781–788.164. Alekseeva A.A., Savin S.S., Kleimenov S.Y., Uporov I. V., Pometun E. V.,Tishkov V.I. Stabilization of plant formate dehydrogenase by rational design. //Biochem. 2012. Vol. 77, № 10. P. 1199–1209.165. Bradford M.M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding.
// Anal.Biochem. 1976. Vol. 72. P. 248–254.166. Poltorak О.M., Chukhrai, Е.S., Torshin I.Y. On the influence of interproteincontacts on the active centers and catalytic properties of oligomeric enzymes //Russ. J. Phys. Chem. 2000. Vol. 74, № 3. P. 400–410.244167. Полторак, О.М., Чухрай Е.С. Диссоциативная термоинактивациякатализаторов. Итоги науки и техники // Итоги науки и техники.Биотехнология. 1986.
Vol. 5. P. 50–86.168. Черскова Н., Хороненкова С., Тишков В. Роль остатков Arg169 и Arg220 вмежсубъединичном контакте дрожжевой оксидазы D аминокислот //Известия Академии Наук.Серия химическая. 2010. P. 262–268.169. Гартман, Т.Н., Клушин Д.В. Основы компьютерного моделирования химикотехнологических процессов. М.: Академкнига, 2006. P. 416.170. Rose G.D., Geselowitz A.R., Lesser G.J., Lee R.H., Zehfus M.H.
Hydrophobicityof amino acid residues in globular proteins // Science (80-. ). 1985. Vol. 229, № 7.P. 834–838.171. McGaughey G.B., Gagné M., Rappé A.K. pi-Stacking interactions. Alive and wellin proteins. // J. Biol. Chem. 1998. Vol. 273, № 25. P. 15458–15463.172. Zacharias M., Sklenar H. Analysis of the stability of looped-out and stacked-inconformations of an adenine bulge in DNA using a continuum model for solventand ions. // Biophys. J.
1997. Vol. 73, № 6. P. 2990–3003.173. Hunter C., Lu X. DNA base-stacking interactions: a comparison of theoreticalcalculations with oligonucleotide X-ray crystal structures // J. Mol. Biol. 1997. Vol.265, № 5. P. 603–619.174. Luo R., Gilson H.S., Potter M.J., Gilson M.K. The physical basis of nucleic acidbase stacking in water. // Biophys. J. 2001. Vol. 80, № 1.
P. 140–148.175. Hobza P. Stacking interactions. // Phys. Chem. Chem. Phys. 2008. Vol. 10, № 19.P. 2581–2583.176. Hunter C.A., Singh J., Thornton J.M. Pi-pi interactions: the geometry andenergetics of phenylalanine-phenylalanine interactions in proteins. // J. Mol. Biol.1991. Vol. 218, № 4. P. 837–846.177. Chakrabarti P., Bhattacharyya R.
Geometry of nonbonded interactions involvingplanar groups in proteins. // Prog. Biophys. Mol. Biol. 2007. Vol. 95, № 1-3. P. 83–137.178. Dougherty D.A. Cation-pi interactions in chemistry and biology: a new view ofbenzene, Phe, Tyr, and Trp. // Science. 1996. Vol. 271, № 5246. P. 163–168.179. Gallivan J.P., Dougherty D. a. Cation-pi interactions in structural biology. // Proc.Natl. Acad. Sci. U.S.A. 1999. Vol. 96, № 17. P. 9459–9464.180.
Zacharias N., Dougherty D. a. Cation-pi interactions in ligand recognition andcatalysis. // Trends Pharmacol. Sci. 2002. Vol. 23, № 6. P. 281–287.181. Anbarasu A, Anand S, Mathew L, Sethumadhavan R. Influence of cation-piinteractions on RNA-binding proteins. // Int. J. Biol.
Macromol. 2007. Vol. 40, №5. P. 479–483.245182. Tayubi I., Sethumadhavan R. Nature of cation-pi interactions and their role instructural stability of immunoglobulin proteins. // Biochem. Biokhimii͡ a. 2010. Vol.75, № 7. P. 912–918.183. Liao S.-M., Du Q.-S., Meng J.-Z., Pang Z.-W., Huang R.-B. The multiple roles ofhistidine in protein interactions. // Chem.
Cent. J. Chemistry Central Journal, 2013.Vol. 7, № 1. P. 44.184. Dougherty D. The cation π-interaction. // Acc. Chem. Res. 2013. Vol. 46, № 4. P.885–893.185. Sivasakthi V., Anitha P., Kumar K.M. Aromatic-aromatic interactions: analysis ofπ-π interactions in interleukins and TNF proteins. // Bioinformation. 2013. Vol. 9,№ 8. P. 432–439.186. Sivasakthi V., Anbarasu A., Ramaiah S. π-π Interactions in Structural Stability:Role in RNA Binding Proteins.