Диссертация (1105539), страница 24
Текст из файла (страница 24)
Soc. Am. Microbeam Anal. Soc. Microsc. Soc. Can., vol. 11, no. 5, pp. 401–409,Oct. 2005.[87] J. Mittal, M. Monthioux, H. Allouche, and O. Stephan, “Room temperature filling of single-wallcarbon nanotubes with chromium oxide in open air,” Chem. Phys. Lett., vol. 339, no. 5–6, pp.311–318, May 2001.[88] S. Friedrichs, R. R. Meyer, J. Sloan, A. I. Kirkland, J.
L. Hutchison, and M. L. H. Green,“Complete characterization of an (Sb2O3)n/SWNT inclusion composite,” Phys. Solid State, vol.44, no. 3, pp. 463–466, Mar. 2002.[89] S. Chen, K. Kobayashi, Y. Miyata, N. Imazu, T. Saito, R. Kitaura, and H.
Shinohara,“Morphology and Melting Behavior of Ionic Liquids inside Single-Walled Carbon Nanotubes,” J.Am. Chem. Soc., vol. 131, no. 41, pp. 14850–14856, Oct. 2009.[90] X. Fan, E. C. Dickey, P. C. Eklund, K. A. Williams, L. Grigorian, R. Buczko, S. T. Pantelides,and S. J.
Pennycook, “Atomic Arrangement of Iodine Atoms inside Single-Walled CarbonNanotubes,” Phys. Rev. Lett., vol. 84, no. 20, pp. 4621–4624, May 2000.[91] Y. Liu and Q. Wang, “Transport behavior of water confined in carbon nanotubes,” Phys. Rev. B,vol. 72, no. 8, p. 085420, Aug. 2005.[92] A. A.
Eliseev, L. V. Yashina, M. M. Brzhezinskaya, M. V. Chernysheva, M. V. Kharlamova, N. I.Verbitsky, A. V. Lukashin, N. A. Kiselev, A. S. Kumskov, R. M. Zakalyuhin, J. L. Hutchison, B.Freitag, and A. S. Vinogradov, “Structure and electronic properties of AgX (X = Cl, Br, I)intercalated single-walled carbon nanotubes,” Carbon, vol. 48, no. 10, pp. 2708–2721, Aug. 2010.[93] N. A. Kiselev, A. A. Eliseev, V. V. Kursheva, N. I. Verbitskii, and A. S. Vyacheslavov, “Diodebased on single-shift carbon nanotube and method of making said diode.,” 2011.[94] J.
S. Bendall, A. Ilie, M. E. Welland, J. Sloan, and M. L. H. Green, “Thermal Stability andReactivity of Metal Halide Filled Single-Walled Carbon Nanotubes,” J. Phys. Chem. B, vol. 110,no. 13, pp. 6569–6573, Apr. 2006.114[95] P. M. F. J. Costa, J. Sloan, T. Rutherford, and M. L. H.
Green, “Encapsulation of RexOy Clusterswithin Single-Walled Carbon Nanotubes and Their in tubulo Reduction and Sintering to ReMetal,” Chem. Mater., vol. 17, no. 26, pp. 6579–6582, Dec. 2005.[96] P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink, and P. J.
Kelly,“First-principles study of the interaction and charge transfer between graphene and metals,” Phys.Rev. B, vol. 79, no. 19, p. 195425, May 2009.[97] M. V. Chernysheva, E. A. Kiseleva, N. I. Verbitskii, A. A. Eliseev, A. V. Lukashin, Y. D.Tretyakov, S. V. Savilov, N. A. Kiselev, O. M. Zhigalina, A. S. Kumskov, A. V. Krestinin, and J.L. Hutchison, “The electronic properties of SWNTs intercalated by electron acceptors,” Phys. ELow-Dimens.
Syst. Nanostructures, vol. 40, no. 7, pp. 2283–2288, May 2008.[98] K. De Blauwe, C. Kramberger, W. Plank, H. Kataura, and T. Pichler, “Raman response of FeCl3intercalated single-wall carbon nanotubes at high doping,” Phys. Status Solidi B, vol. 246, no.11–12, pp. 2732–2736, Dec. 2009.[99] X. Liu, T.
Pichler, M. Knupfer, J. Fink, and H. Kataura, “Electronic properties of FeCl3intercalated single-wall carbon nanotubes,” Phys. Rev. B, vol. 70, no. 20, p. 205405, Nov. 2004.[100] M. V. Kharlamova, M. M. Brzhezinskay, A. S. Vinogradov, I. P. Suzdalev, Y. V. Maksimov,V. K. Imshennik, S. V. Novichikhin, A. V. Krestinin, L. V. Yashina, A. V. Lukashin, Y. D.Tret’yakov, and A. A. Eliseev, “The formation and properties of one-dimensional FeHal2 (Hal =Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes,” Nanotechnologies Russ.,vol. 4, no. 9–10, pp. 634–646, Oct. 2009.[101] M.
V. Kharlamova, A. A. Eliseev, L. V. Yashina, D. I. Petukhov, C.-P. Liu, C.-Y. Wang, D. A.Semenenko, and A. I. Belogorokhov, “Study of the electronic structure of single-walled carbonnanotubes filled with cobalt bromide,” JETP Lett., vol. 91, no. 4, pp. 196–200, Feb. 2010.[102] C. Kramberger, H. Rauf, M. Knupfer, H. Shiozawa, D.
Batchelor, H. Kataura, and T. Pichler,“Electronic and optical properties of alkali metal doped carbon nanotubes,” Phys. Status Solidi B,vol. 246, no. 11–12, pp. 2693–2698, Dec. 2009.[103] H. Shiozawa, C. Kramberger, M. Rümmeli, D. Batchelor, H. Kataura, T. Pichler, and S. R. P.Silva, “Electronic properties of single-walled carbon nanotubes encapsulating a ceriumorganometallic compound,” Phys. Status Solidi B, vol. 246, no.
11–12, pp. 2626–2630, Dec. 2009.[104] P. Ayala, R. Kitaura, R. Nakanishi, H. Shiozawa, D. Ogawa, P. Hoffmann, H. Shinohara, and T.Pichler, “Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowiresinside carbon nanotubes,” Phys. Rev. B, vol. 83, no. 8, p. 085407, Feb.
2011.[105] T. Kato, R. Hatakeyama, J. Shishido, W. Oohara, and K. Tohji, “P-N junction with donor andacceptor encapsulated single-walled carbon nanotubes,” Appl. Phys. Lett., vol. 95, no. 8, p.083109, Aug. 2009.115[106] X. Liu, T. Pichler, M. Knupfer, and J. Fink, “Electronic properties of barium-intercalatedsingle-wall carbon nanotubes,” Phys. Rev. B, vol. 70, no.
24, p. 245435, Dec. 2004.[107] E. Borowiak-Palen, M. H. Ruemmeli, T. Gemming, T. Pichler, R. J. Kalenczuk, and S. R. P.Silva, “Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties,”Nanotechnology, vol. 17, no. 9, p. 2415, May 2006.[108] M. Zhao, Y.
Xia, J. P. Lewis, and R. Zhang, “First-principles calculations for nitrogencontaining single-walled carbon nanotubes,” J. Appl. Phys., vol. 94, no. 4, pp. 2398–2402, Aug.2003.[109] Z. Zhou, J. Zhao, Z. Chen, X. Gao, J. P. Lu, P. von Ragué Schleyer, and C.-K. Yang, “Truenanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores,” J.Phys.
Chem. B, vol. 110, no. 6, pp. 2529–2532, Feb. 2006.[110] G. Lota, E. Frackowiak, J. Mittal, and M. Monthioux, “High performance supercapacitor fromchromium oxide-nanotubes based electrodes,” Chem. Phys. Lett., vol. 434, no. 1–3, pp. 73–77,Jan. 2007.[111] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes.London: Imperial College Press, 1999.[112] A. Grüneis, C. Attaccalite, L. Wirtz, H. Shiozawa, R. Saito, T.
Pichler, and A. Rubio, “Tightbinding description of the quasiparticle dispersion of graphite and few-layer graphene,” Phys. Rev.B, vol. 78, no. 20, p. 205425, Nov. 2008.[113] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, “Tight-binding description of graphene,”Phys. Rev. B, vol. 66, no. 3, p. 035412, Jul. 2002.[114] P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev., vol.
71, no. 9, pp. 622–634, 1947.[115] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and UniformGraphene Films on Copper Foils,” Science, vol. 324, no. 5932, pp. 1312–1314, Jun. 2009.[116] A.
Grüneis, K. Kummer, and D. V. Vyalikh, “Dynamics of graphene growth on a metalsurface: a time-dependent photoemission study,” New J. Phys., vol. 11, no. 7, p. 073050, Jul.2009.[117] Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C. Oshima, “Atomic structure ofmonolayer graphite formed on Ni(111),” Surf. Sci., vol. 374, no. 1–3, pp.
61–64, Mar. 1997.[118] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, “Origin of spatial chargeinhomogeneity in graphene,” Nat. Phys., vol. 5, no. 10, pp. 722–726, Oct. 2009.[119] A. Nagashima, N. Tejima, and C. Oshima, “Electronic states of the pristine and alkali-metalintercalated monolayer graphite/Ni(111) systems,” Phys. Rev.
B, vol. 50, no. 23, pp. 17487–17495, Dec. 1994.116[120] A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D.Marchenko, and O. Rader, “Electronic and Magnetic Properties of Quasifreestanding Grapheneon Ni,” Phys. Rev. Lett., vol. 101, no. 15, p. 157601, Oct. 2008.[121] J. Kang, D. Shin, S. Bae, and B. H. Hong, “Graphene transfer: key for applications,” Nanoscale,vol. 4, no. 18, pp. 5527–5537, Aug. 2012.[122] A.
Nagashima, N. Tejima, and C. Oshima, “Electronic states of the pristine and alkali-metalintercalated monolayer graphite/Ni(111) systems,” Phys. Rev. B, vol. 50, no. 23, pp. 17487–17495, Dec. 1994.[123] E. Voloshina and Y. Dedkov, “Graphene on metallic surfaces: problems and perspectives,”Phys. Chem. Chem. Phys., vol. 14, no. 39, pp. 13502–13514, Sep.
2012.[124] A. M. Shikin, D. Farías, and K. H. Rieder, “Phonon stiffening induced by copper intercalationin monolayer graphite on Ni(111),” Europhys. Lett. EPL, vol. 44, no. 1, pp. 44–49, Oct. 1998.[125] E. N. Voloshina, A. Generalov, M. Weser, S. Böttcher, K. Horn, and Y. S. Dedkov, “Structuraland electronic properties of the graphene/Al/Ni(111) intercalation system,” New J. Phys., vol.
13,no. 11, p. 113028, 2011.[126] Y. S. Park, J. H. Park, H. N. Hwang, T. S. Laishram, K. S. Kim, M. H. Kang, and C. C. Hwang,“Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous NaIntercalation,” Phys. Rev. X, vol. 4, no. 3, p. 031016, Jul.
2014.[127] O. Vilkov, A. Fedorov, D. Usachov, L. V. Yashina, A. V. Generalov, K. Borygina, N. I.Verbitskiy, A. Grüneis, and D. V. Vyalikh, “Controlled assembly of graphene-capped nickel,cobalt and iron silicides,” Sci. Rep., vol. 3, Jul. 2013.[128] K. V. Emtsev, A. A. Zakharov, C. Coletti, S. Forti, and U. Starke, “Ambipolar doping inquasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation,” Phys.