Диссертация (1105524), страница 32
Текст из файла (страница 32)
2007.Vol. 7. P. 1013 – 1017.101.Ringe E., McMahon J.M. et al. Unraveling the effects of size, composition, andsubstrate on the localized surface plasmon resonance frequencies of gold and silvernanocubes: a systematic single-particle approach // J. Phys. Chem. C. 2010.
Vol.114. P. 12511 – 12516.102.Lu L., Kobayashi A. et al. Silver Nanoplates with Special Shapes: ControlledSynthesis and Their Surface Plasmon Resonance and Surface-Enhanced RamanScattering Properties // Chem. Mater. 2006. Vol. 18. P. 4894 – 4901.103.Xiong Y., McLellan J. M. et al. Kinetically controlled synthesis of triangular andhexagonal nanoplates of palladium and their SPR/SERS properties // J. Am.
Chem.Soc. 2005. Vol. 127. P. 17118 – 17127.104.Yi Z., Xu X. et al. Silver nanoplates: controlled preparation, self-assembly, andapplications in surface-enhanced Raman scattering // Appl. Phys. A: Mater. Sci.Process. 2013. Vol. 110. P. 335 – 342.105.Nikoobakht B., El-Sayed M.A. Surface-Enhanced Raman Scattering Studies onAggregated Gold Nanorods // J. Phys.
Chem. A. 2003. Vol. 107. P. 3372 – 3378.106.Sivapalan S.T., DeVetter B.M. et al. Off-resonance surface-enhanced Ramanspectroscopy from gold nanorod suspensions as a function of aspect ratio: not whatwe thought // ACS Nano. 2013. Vol. 7. P. 2099 – 2105.107.Khlebtsov B.N., Khanadeev V.A.
et al. Overgrowth of Gold Nanorods by Using aBinary Surfactant Mixture // Langmuir. 2014. Vol. 30. P. 1696 − 1703.187108.Khlebtsov B.N., Khanadeev V.A. et al. Surface-Enhanced Raman ScatteringSubstrates Based on Self-Assembled PEGylated Gold and Gold−Silver Core−ShellNanorods // J. Phys. Chem. C. 2013. Vol. 117. P. 23162 − 23171.109.Nelayah J., Kociak M. et al. Mapping surface plasmons on a single metallicnanoparticle // Nat. Phys. 2007. Vol. 3.
P. 348 – 353.110.Murphy C.J., Gole A.M. et al. Chemical sensing and imaging with metallicnanorods // Chem. Commun. 2008. Vol. 5. P. 544 – 557.111.Murphy C.J., Gole A.M. et al. Gold nanoparticles in biology: beyond toxicity tocellular imaging // Acc. Chem. Res. 2008. Vol.
41. P. 1721 – 1730.112.Huang X., Neretina S. and El-Sayed M.A. Gold Nanorods: From Synthesis andProperties to Biological and Biomedical Applications // Adv. Mater. 2009. Vol. 21.P. 4880 – 4910.113.Becker J., Trugler A. et al. The optimal aspect ratio of gold nanorods for plasmonicbio-sensing // Plasmonics. 2010. Vol. 5. P.
161 – 167.114.Huang X., El-Sayed I.H. et al. Cancer cells assemble and align gold nanorodsconjugated to antibodies to produce highly enhanced, sharp, and polarized surfaceRaman spectra: a potential cancer diagnostic marker // Nano Lett. 2007. Vol. 7. P.1591 – 1597.115.Ruoslahti E., Bhatia S.N. and Sailor M.J. Targeting of drugs and nanoparticles totumors // J. Cell Biol.
2010. Vol. 188. P. 759 – 768.116.Khlebtsov B.N., Panfilova E.V. et al. Plasmonic Nanopowders for PhotothermalTherapy of Tumors // Langmuir. 2012. Vol. 28, № 24. P. 8994 – 9002.117.Оленин А.Ю. Механизмы формирования металлических наночастиц //Российские нанотехнологии. 2012.
Т. 7, № 5 – 6. С. 53 – 55.118.Grzelczak M., Perez-Juste J. et al. Shape control in gold nanoparticle synthesis //Chem. Soc. Rev. 2008. Vol. 37. P. 1783 – 1791.119.Низамов Т.Р., Евстафьев И.В и др. Анизотропный рост наночастиц серебра напредварительно синтезированных зародышах // Российские нанотехнологии.2014. Т. 9, № 7 – 8. С. 35 – 39.120.Wiley B., Sun Y. and Xia Y. Synthesis of Silver Nanostructures with ControlledShapes and Properties // Acc. Chem.
Res. 2007. Vol. 40, № 10. P. 1067 – 1076.188121.Jana D., Mandal A. and De G. High Raman Enhancing Shape-Tunable AgNanoplates in Alumina: A Reliable and Efficient SERS Technique // ACS Appl.Mater. Interfaces. 2012. Vol. 4, № 7. P. 3330 – 3334.122.Shkilnyy A., Souce M. et al. Poly(ethylene glycol)-stabilized silver nanoparticlesfor bioanalytical applications of SERS spectroscopy // Analyst. 2009. Vol. 134. P.1868 – 1872.123.Stiufiuc R., Iacovita C. et al.
SERS-active silver colloids prepared by reduction ofsilver nitrate with short-chain polyethylene glycol // Nanoscale Res. Lett. 2013. doi:10.1186/1556-276X-8-47.124.Zeng J., Xia X.H. et al. Successive Deposition of Silver on Silver Nanoplates:Lateral versus Vertical Growth // Angew.
Chem. Int. Ed. 2011. Vol. 50. P. 244 –249.125.Chen S.H., Carroll D.L. Synthesis and Characterization of Truncated TriangularSilver Nanoplates // Nano Lett. 2002. Vol. 2. P. 1003 – 1007.126.Vetter T., Iggland M. et. al. Modeling Nucleation, Growth, and Ostwald Ripeningin Crystallization Processes: A Comparison between Population Balance andKinetic Rate Equation // Cryst. Growth Des. 2013. Vol. 13, № 11. P. 4890 – 4905.127.Simakin A.V., Voronov V.V.
et al. Nanoparticles produced by laser ablation ofsolids in liquid environment // Appl. Phys. A. 2004. Vol. 79. P. 1127 – 1132.128.Amendola V., Polizzi S. and Meneghetti M. Free Silver Nanoparticles Synthesizedby Laser Ablation in Organic Solvents and Their Easy Functionalization //Langmuir. 2007. Vol. 23. P.
6766 – 6770.129.Mafune F., Kohno J. et al. Formation and Size Control of Silver Nanoparticles byLaser Ablation in Aqueous Solution // J. Phys. Chem. B. 2000. Vol. 104, № 39. P.9111 – 9117.130.Brazhe N.A., Abdali S. et al. New Insight into Erythrocyte through In Vivo SurfaceEnhanced Raman Spectroscopy // Biophys.
J. 2009. Vol. 97, № 12. P. 3206 – 3214.131.Casella M., Lucotti A. et al. Raman and SERS recognition of β-carotene andhaemoglobin fingerprints in human whole blood // Spectrochim. Acta Mol. Biomol.Spectrosc. 2011. Vol. 79, № 5. P. 915 – 919.189132.Premasiri W.R., Lee J.C. and Ziegler L.D. Surface-Enhanced Raman Scattering ofWhole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes andBioanalytical Sensing // J.
Phys. Chem. B. 2012. Vol. 116, № 31. P. 9376 – 9386.133.Im H., Bantz K.C. et al. Vertically Oriented Sub-10-nm Plasmonic Nanogap Arrays// Nano Lett. 2010. Vol. 10. P. 2231 – 2236.134.Gunnarsson L., Bjerneld E.J. et al. Interparticle coupling effects in nanofabricatedsubstrates for surface-enhanced Raman scattering // Appl. Phys. Lett.
2001. Vol. 78.P. 802 – 804.135.Ward D.R., Grady N.K. et al. Electromigrated Nanoscale Gaps for SurfaceEnhanced Raman Spectroscopy // Nano Lett. 2007. Vol. 7, № 5. P. 1396 – 1400.136.Gopinath A., Boriskina S.V. et al. Plasmonic nanogalaxies: multiscale aperiodicarrays for surface-enhanced Raman sensing // Nano Lett. 2009. Vol. 9. P. 3922 –3929.137.Wang H., Levin C.S. and Halas N.J. Nanosphere arrays with controlled sub-10-nmgaps as surface-enhanced raman spectroscopy substrates // J. Am.
Chem. Soc. 2005.Vol. 127. P. 14992 – 14993.138.Lu Y., Liu G.L. et al. Nanophotonic Crescent Moon Structures with Sharp Edge forUltrasensitiveBiomolecularDetectionbyLocalElectromagneticFieldEnhancement Effect // Nano Lett. 2004. Vol. 5. P. 119 – 124.139.Litorja M., Haynes C.L., Haes A.J. et al. Surface-Enhanced Raman ScatteringDetected Temperature Programmed Desorption: Optical Properties, Nanostructure,and Stability of Silver Films Over SiO2 Nanospheres // J. Phys.
Chem. B. 2001. Vol.105. P. 6907 – 6915.140.Abu Hatab N.A., Oran J.M. and Sepaniak M.J. Surface-Enhanced RamanSpectroscopy Substrates Created via Electron Beam Lithography and NanotransferPrinting // ACS Nano. 2008. Vol. 2, № 2. P. 377 – 385.141.Ryckman J.D., Liscidini M.
et al. Direct Imprinting of Porous Substrates: A Rapidand Low-Cost Approach for Patterning Porous Nanomaterials // Nano Lett. 2011.Vol. 11. P. 1857 – 1862.142.Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures //Trends Anal. Chem. 1998. Vol. 17. P. 557 – 582.190143.Yue W., Wang Z. et al. Electron-beam lithography of gold nanostructures forsurface-enhanced Raman scattering // J. Micromech.
Microeng. 2012. Vol. 22, P.125007.144.Haynes C.L., Van Duyne R.P. Plasmon Scanned Surface-Enhanced RamanScattering Excitation Profiles // Mat. Res. Soc. Symp. Proc. 2002. Vol. 728. S10.7.1– S10.7.6.145.Tang J., Yia Y. et al. Porous Ag and Au hybrid nanostructures: Synthesis,morphology, and their surface-enhanced Raman scattering properties // Physica B.2014. Vol. 433. P.
138 – 143.146.Van Duyne R.P., Hulteen J.C. and Treichel D.A. Atomic force microscopy andsurface‐enhanced Raman spectroscopy. I. Ag island films and Ag film over polymernanosphere surfaces supported on glass // J. Chem. Phys. 1993. Vol. 99. P. 2101 –2115.147.Im H., Bantz K.C. et al. Self-Assembled Plasmonic Nanoring Cavity Arrays forSERS and LSPR Biosensing // Adv. Mater. 2013. Vol. 25.
P. 2678 – 2685.148.Li H., Baum C.E. et al. Multilayer Enhanced Gold Film over Nanostructure SurfaceEnhanced Raman Substrates // Appl. Spectrosc. 2006. Vol. 60. P. 1377 – 1385.149.Schmidt M.S., Hubner J. and Boisen A. Large Area Fabrication of Leaning SiliconNanopillars for Surface Enhanced Raman Spectroscopy // Adv. Mater. 2012. Vol.24, № 10. P. OP11 – OP18.150.Yang J., Palla M. et al.
Surface-Enhanced Raman Spectroscopy Based QuantitativeBioassay on Aptamer-Functionalized Nanopillars Using Large-Area RamanMapping // ACS Nano. 2013. Vol. 7, № 6. P. 5350 – 5359.151.Kwan S., Kim F. et al. Synthesis and assembly of BaWO4 nanorods // Chem.Commun. 2001. Vol 5. P. 447 – 448.152.Chung S.-W., Markovich G. and Heath J.R. Fabrication and Alignment of Wires inTwo Dimensions // Journal of Physical Chemistry B. 1998.
Vol. 102, № 35. P. 6685– 6687.153.Heriot S.Y., Zhang H., Evans S.D. Multilayers of 4-methylbenzenethiolfunctionalized gold nanoparticles fabricated by Langmuir–Blodgett and Langmuir–Schaefer deposition // Colloid Surf. A-Physicochem. Eng. Asp. 2006. Vol.
278. P.98 – 105.191154.Mayya K.M., Jain N. et al. Time-dependent complexation of glucose-reduced goldnanoparticles with octadecylamine Langmuir monolayers // J. Colloid Interface Sci.2004. Vol. 270. P. 133 – 139.155.Ma H., Perea B. and Dai L.L. Study of two-component colloidal particles atair/water interfaces using Langmuir–Blodgett techniques // Colloids Surf., A. 2010.Vol. 372. P.