Диссертация (1097990), страница 50
Текст из файла (страница 50)
V. 15. N. 5. P. 671-676.138. Levi-Setti R., Crow G., Wang Y.L., Parker N.W., Mittleman R., Hwang D.M.High-resolution scanning-ion-microprobe study of graphite and its intercalationcompounds // Phys. Rev. Lett. 1985. V. 54. N. 24. P. 2615-2618.139. Nishitani R., Uno Y., Suematsu H. In situ observation of staging in potassium-graphite intercalation compounds // Phys. Rev. B. 1983. V. 27.
N. 10.P. 6572-6575.140. Clarke R., Wada N., Solin S.A. Pressure-induced staging transition in KC24 //Phys. Rev. Lett. 1980. V. 44. N. 24. P. 1616-1619.141. Wada N. High-pressure x-ray and Raman studies of rubidium and cesiumgraphite intercalation compounds // Phys. Rev. B. 1981. V. 24. N. 2. P. 1065-1080.142. Fuerst C.D., Moses D., Fischer J.E.
Pressure-induced anomalies in the c-axisresistivity of potassium-intercalated graphite // Phys. Rev. B. 1981. V. 24. N. 12.P. 7471-7473.143. Clarke R., Uher C. High pressure properties of graphite and its intercalation- 347 compounds // Adv. in Phys. 1984. V.
33. N. 5. P. 469-566.144. Fuerst C.D., Moses D., Fischer J.E. Pressure-induced anomalies in the c-axisresistivity of potassium-intercalated graphite // Phys. Rev. B. 1981. V. 24. N. 12.P. 7471-7473.145. Новиков Ю.Н., Лапкина Н.Д., Стручков Ю.Т., Вольпин М.Е. Новый метод синтеза слоистых соединений графита с хлоридами кобальта, никеля,марганца и меди // ЖСХ.
1976. Т. 17. С. 756-758.146. Avdeev V.V., Monyakina L.A., Nikol'skaya I.V. The potentiometric investigations of graphite hydrogensulfate chemical synthesis (oxidizer-(NH4)2S2O8) //Carbon. 1994. V. 32. N. 3. P. 541-542.147. Avdeev V.V., Monyakina L.A., Nikol'skaya I.V., Sorokina N.E., SemenenkoK.N. The choice of oxidizers for graphite hydrogenosulfate chemical synthesis //Carbon. 1992. V. 30. N. 6. P. 819-823.148. Авдеев В.В., Сорокина Н.Е., Никольская И.В., Монякина Л.А., Воронкина А.В.
Синтез соединений внедрения в системе графит−HNO3−H2SO4 // Неорг. Мат. 1997. Т. 33. № 6. С. 699-702.149. Avdeev V.V., Martynov I.U., Nikol’skaya I.V., Monyakina L.A., SorokinaN.E. Investigation of the Graphite-H2SO4-gaseous oxidizer (Cl2, O3, SO3) system //J. Phys. Chem.
Solids. 1996. V. 57. N. 6-8. P. 837-840.150. Coulsoun C.A. Energy band in graphite // Nature. 1947. V. 159. P. 265-266.151. Wallace P.R. The band theory of graphite // Phys. Rev. 1947. V. 71. N. 9.P. 622-634.152. Coulsoun C.A., Taylor R. Electronic band theory of graphite // Proc. Roy.Soc. (London). 1952. V. 65. P. 815-825.153.
Johnston D.F. The structure of the π-band of graphite // Proc. Roy. Soc. (London). 1955. V. 227. N. 1170. P. 349-358.154. Johnston D.F. The effect of the mixing of π and ζ orbitals on the Fermi surface in L.C.A.O. model for graphite // Proc. Roy. Soc. (London). 1956. V. 237.N. 1208. P. 48-54.- 348 155. Slonczewski J.C., Weiss P.R. Band structure of graphite // Phys. Rev. 1958.V.
109. P. 272-279.156. McClure J.W. Band structure of graphite and de Haas-van-Alphen effect //Phys. Rev. 1960. V. 109. P. 272-279.157. Moore A.W. Highly oriented pyrolitic graphite // In Chem. and Phys. of Carbon. 1973. V. 11. P. 69-187.158. Soule D.E. Magnetic field dependence of the Hall Effect and magnetoresistance in graphite single crystal // Phys. Rev. 1958. V. 112. N. 3.
P. 698-707.159. Soule D.E., McClure J.W., Smith L.B. Study of the Shubnikov-de Haas effect. Determination of the Fermi surfaces in graphite // Phys. Rev. 1964. V. 134.N. 2. P. 453-470.160. Williamson S.J., Foner S., Dresselhaus M.S. De Haas – van Alphen Effect inpyrolytic and single-crystal graphite // Phys. Rev. 1965. V.
140. N. 4.P. 1429-1447.161. Woollam J.A. Minority carriers in graphite // Phys. Rev. B. 1971. V. 4. N. 10.P. 3393-3398.162. McClure J.W. Band structure of graphite and de Haas-van Alphen effect //Phys. Rev. 1957. V. 108. N. 3. P. 612-618.163. Williamson S.J., Foner S., Dresselhaus M.S. De Haas-van Alphen Effect inPyrolytic and Single-Crystal Graphite // Phys.
Rev. A. 1965. V. 140. N. 4.P. 1429-1447.164. Schroeder P.R., Dresselhaus M.S., Javan A. Location of electron and hole carriers in graphite from laser magnetoreflection data // Phys. Rev. Lett. 1968. V. 20.N. 23. P. 1292-1295.165. Woollam J.A. Graphite carrier locations and quantum transport to 10 T(100 kG) // Phys. Rev. B. 1971. V. 3. N.
4. P. 1148-1159.166. Luk’yanchuk I.A., Kopelevich Y. Phase analysis of quantum oscillations ingraphite // Phys. Rev. Lett. 2004. V. 93. N. 16. P. 166402.167. Luk’yanchuk I. A., Kopelevich Y. Dirac and normal fermions in graphite and- 349 graphene: Implications of the quantum Hall Effect // Phys. Rev. Lett. 2006. V. 97.N. 25. P. 256801.168. Mikitik G. P., Sharlai Y. V. Band-contact lines in the electron energy spectrum of graphite // Phys. Rev. B.
2006. V. 73. N. 23. P. 235112.169. Schneider J. M., Orlita M., Potemski M., Maude D. K. Consistent Interpretation of the Low-Temperature Magnetotransport in Graphite Using the Slonczewski-Weiss-McClure 3D Band-Structure Calculations // Phys. Rev. Lett. 2009. V.102. N. 16. P. 166403.170.
Hubbard S. B., Kershaw T. J., Usher A., Savchenko A. K., Shytov A. Millikelvin de Haas–van Alphen and magnetotransport studies of graphite //Phys. Rev. B. 2011. V. 83. N. 3. P. 035122.171. Blinowski J., Nguyen Hy Hay, Rigaux C., Vieren J.P. Band structure modeland dynamic dielectric function in lowest stages of graphite acceptor compounds //J. Physique. 1980. V. 4. N. 1. P.
47-58.172. Blinowski J., Rigaux C. Band structure model and electrostatic effects in thirdand fourth stages of graphite acceptor compounds // J. Physique. 1980. V. 41. N. 7.P. 667-676.173. Nguyen Hy Hay, Blinowski J., Rigaux C., Letoullec R. Intervalence transitions in graphite acceptor compounds // Synth. Metals. 1981. V. 3. P. 99-109.174. Dresselhaus M.S., Dresselhaus G., Fisher G.E. Graphite intercalation compounds: Electronic properties in the dilute limit // Phys. Rev. B. 1977.
V. 15. N. 6.P. 3180-3192.175. Fiang J., Beck F. Thermodynamic data for anodic solid state graphite oxidation products in 96% sulphuric acid // Carbon. 1992. V. 30. № 2. P. 223-228.176. Jnioui A., Metrot A., Storck A. Electrochemical production of graphite saltsusing a three-dimensional electrode of graphite particles // Electrochim. Acta.1982.
V. 27. N. 9. P. 1247-1252.177. Metrot A., Fischer J.E. Charge transfer reactions during anodic oxidation ofgraphite in H2SO4 // Synt. Metals. 1981. V. 3. N. 3. P. 201-207.- 350 178. Fischer J.E., Metrot A., Flanders P.J., Salaneck W.R., Brucker C.F. Latticestability and limits to charge transfer in intercalated graphite // Phys. Rev. B. 1981.V. 23. № 10. P. 5576-5580.179. Русьянов В.Г., Денисов В.П., Драгунов Ю.Г., Селезнев А.В., Рыжев С.Б.,Геронтьев А.Е., Конюшков А.Г.
Уплотнительные устройства разъемных соединений оборудования реакторных установок ВВЭР. – М.: ИКЦ «Академкнига», 2004. – 134 с.180. Dollimore D., Heal G.R. The analysis of gas adsorption data to determinepore structure // Surface Technology. 1978. V. 6. N. 4. P. 231-258.181. Руководство по препаративной неорганической химии / Под ред. Брауэра Г. – М.: Иностр. лит., 1956. – 896 с.182. Dziemianowicz T., Forsman W., Vangelisti R., Herold A.
The system graphite−MnCl2−AlCl3: kinetics, structure and mechanism of formation // Carbon.1984. V. 22. N. 1. P. 53-61.183. Налимова В.А. Сильносжатые щелочные металлы в углеродных матрицах: дис. на соискание ученой степени доктора хим. наук: 02.00.01 / Налимова Вера Анатольевна. – М., 1997. – 358 с.184.
Celzard A., Mareche J.F., Furdin G. Surface area of compressed expandedgraphite // Carbon. 2002. V. 40. P. 2713-2718.185. Bianconi P.A., Joray S.J., Aldrich B.L., Sumranjit J., Duffy D.J., Long D.P.,Lazorcik J.L.,Raboin L., Keams J.K., Smulligan S.L., Babyak J.M. Diamond anddiamond-like carbon from a preceramic polymer // J. Am. Chem.
Soc. 2004.V. 126. P. 3191-3202.186. Sun Z., Shi X., Tay B.K., Flynn D., Wang X., Zheng Z., Sun Y. Low pressurepolymer precursor process for synthesis of hard glassy carbon and diamond films //Diamond Relat. Mater. 1997. V. 6. P. 230-234.187. Ohaberski A. Z. Contactless induction method for electric resistivity measurement // J. Appl. Phys. 1971. V.
12. N. 3. P. 940-947.188. Crowley J.D., Rabson T.A. Contactless method of measuring resistivity //- 351 Rev. Sci. Instrum. 1976. V. 47. N. 6. P. 712-715.189. Zeller C., Denenstein A., Foley G.M.T. Contactless technique for the measurement of electrical resistivity in anisotropic materials // Rev. Sci. Instrum. 1979.V. 50. N. 5. P. 602-607.190. Herold A. Basal plane resistivity of alkali metal-graphite compounds // Physica B. 1980. V.
99. N. 1-4. P. 489-493.191. McRae E.J., Mareche J.E., Herold A. Contactless resistivity measurements atechnique adapted to graphite intercalation compounds // J. of Phys. E: Sci. Instrum. 1980. V. 13. P. 241-245.192. Flanders P. J., Shtrikman S. Contactless conductivity measurements with arotating sample magnetometer // Rev. Sci. Instrum. 1980.
V. 51. N. 5. P. 617-620.193. Pendrys L.A., Zeller C., Vogel F.L. Electrical transport properties of naturaland synthetic graphite // J. Mater. Sci. 1980. V. 15. N. 8. P. 2103-2112.194. Ицкевич Е.С. Бомба высокого давления для работы при низких температурах // ПТЭ. 1963. № 4. С. 148-151.195. Ицкевич Е.С., Вороновский А.Н., Гаврилов А.Ф., Сухопаров В.А. Камера высокого давления до 18 кбар для работы при гелиевых температурах //ПТЭ.
1966. № 6. С. 161-164.196. Бранд Н.Б., Кувшинников С.В., Пономарев Я.Г. Исследование влияниядавления до 10 кбар на поверхность Ферми олова // Письма в ЖЭТФ. 1974.Т. 19. С. 201-204.197. Бранд Н.Б., Кувшинников С.В., Минина Н.Я., Скипетров Е.П. Способповышения гидростатического давления при низких температурах в бомбахфиксированного давления // ПТЭ. 1974. № 6. С. 160-164.198. Brand N.B., Kuvshinnikov S.V., Minina N.Ya., Skipetrov E.P.