Диссертация (1097990), страница 48
Текст из файла (страница 48)
784-804.16. Dresselhaus M.S., Dresselhaus G. Intercalation compounds of graphite // Adv.in Phys. 2002. V. 51. N. 1. P. 1-186.17. Enoki T., Suzuki M., Endo M. Graphite intercalation compounds and applications. – New York: Oxford University Press, 2003. – 440 p.18. Гинзбург В.Л.
К вопросу о поверхностной сверхпроводимости // ЖЭТФ.1964. Т. 47. С. 2318-2320.19. Ginzburg V.L. On surface superconductivity // Phys. Lett. 1964. V. 13. № 2.P. 101-102.20. Parvez K., Yang Sh., Feng X., Müllen K. Exfoliation of graphene via wetchemical routes // Synth. Metals. 2015. V. 210. P. 123-132.21. Inagaki M. New carbons: control of structure and functions. – Oxford: ElsevierScience Ltd, 2000. – 229 p.22. Yasuda E., Inagaki M., Kaneko K., Endo M., Oya A., Tanabe Y.
Carbon alloys: novel concepts to develop carbon science and technology. – Oxford: ElsevierScience Ltd, 2003. – 569 p.23. Аксенов В.В., Власов В.М., Шнитко Г.М. Слоистые соединения щелочных металлов в графите в тонком органическом синтезе // Успехи химии.1990. Т. 59. С. 1267-1287.24. Gaier J.R., Hardebeck W.C., Bunch J.R.T., Davidson M.L., Beery D.W.
Effect- 337 of intercalation in graphite epoxy composites on the shielding of high energy radiation // Journal of materials research. 1998. V. 13. № 8. P. 2297-2301.25. Chung D.D.L. Intercalated graphite as a smart material for high-stress, highstrain, low-electric-field electromechanical switching // Smart Mater. Struct. 1992.V. 1. P. 233-236.26. Besenhard J.O., Theodoridou E. Electrochemical applications of graphite intercalation compounds // Synth. Metals. 1982. V. 4. P. 211-223.27.
Pfluger P., Kunzi H.U., Guntherodt H.-J. Discovery of a new reversible electrochromic effect // Appl. Phys. Lett. 1979. V. 35. N. 10. P. 771-772.28. Setton R. The graphite intercalation compounds: their uses in industry andchemistry // Synth.
Metals. 1988. V. 23. P. 467-473.29. Patent UK 1522808. Graphite intercalation compounds / Vogel F.L. – 1975.30. Inagaki M. Applications of graphite intercalation compounds // J. Mater. Res.1989. V. 4. N. 6. P. 1560-1568.31. Зиатдинов А.М. Нанографиты, их соединения и пленочные структуры //Известия Академии наук. Серия химическая. 2015. № 1. С. 1-14.32.
Chung D.D.L. A review of exfoliated graphite // J. Mater. Sci. 2016. V. 51.P. 554-568.33. Gantayat S., Prusty G., Rout D.R., Swain S. Expanded graphite as a filler forepoxy matrix composites to improve their thermal, mechanical and electrical properties // New Carbon Materials. 2015. V. 30. № 5. P. 432-437.34.
Epelbaum B.M., Gurzhiyants P.A., Belenko S.V. Thermally exfoliated graphite– an effective carbon precursor for liquid-phase reaction processing of SiC-basedceramics // Mater. Lett. 1998. V. 34. P. 423-429.35. Li L., Xiang C., Qian H., Hao B., Chen K., Qiao R. Expanded graphite/cobaltferrite/polyaniline ternary composites: fabrication, properties, and potential applications // J. Mater. Res. 2011. V.
26. № 21. P. 2683-2690.36. Mates J.E., Bayer I.S., Salerno M, Carroll P.J., Jiang Z., Liu L., Megaridis C.M. Durable and flexible graphene composites based on artists’ paint for con-- 338 ductive paper applications // Carbon. 2015. V. 87. P. 163-174.37. Mhike W., Focke W.W., Mofokeng J.P., Luyt A.S. Thermally conductivephase-change materials for energy storage based on low-density polyethylene, softFischer–Tropsch wax and graphite // Thermochimica Acta. 2012. V. 527. P. 75-82.38. Dhakate S.R., Sharma S., Borah M., Mathur R.B., Dhami T.L.
Developmentand characterization of expanded graphite-based nanocomposite as bipolar platefor polymer electrolyte membrane fuel cells (PEMFCs) // Energy & Fuels. 2008.V. 22. P. 3329-3334.39. Dhakate S.R., Mathur R.B., Sharma S., Borah M., Dhami T.L. Influence of expanded graphite particle size on the properties of composite bipolar plates for fuelcell application // Energy & Fuels.
2009. V. 23. P. 934-941.40. Антонов В.И., Кудрин А.А., Костылева Н.В., Анисимов В.А. Применениетерморасширяющегося графита для защиты плавильного пространства печи// Металлург. 2008. № 6. С. 38-40.41. Wen Y., He K., Zhu Y., Han F., Xu Y., Matsuda I., Ishii Y., Cumings J.,Wang C. Expanded graphite as superior anode for sodium-ion batteries // Naturecommunications. 2014. V. 5.
P. 1-10.42. Toyoda M., Iwashita N., Inagaki M. Sorption of heavy oils into carbon materials // Chem. and Phys. of Carbon. 2008. V. 30. P. 177-237.43. Yoshimoto S., Amano J., Miura K. Synthesis of a fullerene/expanded graphitecomposite and its lubricating properties // J. Mater. Sci. 2010. V.
45. P. 1955-1962.44. Компан М.Е., Компан Ф.М., Гладких Е.И., Теруков Е.И., Рупышев В.Г.,Четаев Ю.В. Теплопроводность композитной среды с дисперсным графеновым наполнителем // ЖТФ. 2011. Т. 81. № 8. С. 15-19.45. Rodriguez N.M., Baker R.T.K. Fundamental studies of the influence of boronon the graphite-oxygen reaction using in situ electron microscopy techniques //J. Mater. Res. 1993. V. 8. N. 8. P.
1886-1894.46. Chung D.D.L. Review. Exfoliation of graphite // J. Mater. Sci. 1987. V. 22.P. 4190-4198.- 339 47. Xiang J., Drzal L.T. Investigation of exfoliated graphite nanoplatelets (xGnP)in improving thermal conductivity of paraffin wax-based phase change material //Solar Energy Materials & Solar Cells. 2011. V. 95. P. 1811-1818.48. Matsumoto R., Okabe Y. Electrical conductivity and air stability of FeCl 3,CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexiblegraphite sheets // Synth. Metals. 2016. V. 212.
P. 62-68.49. Inagaki M. Applications of graphite intercalation compounds // J. Mater. Res.1989. V. 4. N. 6. P. 1560-1568.50. Chung D.D.L. Flexible graphite for gasketing, adsorption, electromagnetic interference shielding, vibration damping, electrochemical applications, and stresssensing // Jmepeg. 2000. V. 10. P. 161-163.51. Бурлешин М. Графит приходит на смену асбеста // Вестник Мосэнерго.2001. № 9. С. 3-4.52. Luo X., Chung D.D.L. Vibration damping using flexible graphite // Carbon.2000. V.
38. N. 10. P. 1510-1512.53. Yazici M.S., Krassowski D., Prakash J. Flexible graphite as battery anode andcurrent collector // J. of Power Sources. 2005. V. 141. P. 171-176.54. Morishita M., Takagi T. Evolution of competition of multiple-spin-exchangeintercalations and structure in submonolayer solid 3He film adsorbed on Grafoil //Phys.
Rev. Lett. 2001. V. 87. N. 18. P. 185301.55. Avdeev V.V., Nalimova V.A., Semenenko K.N. The alkali metals in graphitematrixes – new aspects of metallic state chemistry // High Press. Res. 1990. V. 6.P. 11-25.56. Belash I.T., Bronnikov A.D., Zharikov O.V., Pal’nichenko A.V. Effect of themetal concentration on the superconducting properties of lithium-, sodium- and potassium-containing graphite intercalation compounds // Synth. Metals.
1990. V. 36.P. 283-302.- 340 57. Weller T.E., Ellerby M., Saxena S.S., Smith R.P., Skipper N.T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca // Nature Physics.2005. V. 1. P. 39-41.58. Emery N., Herold C., Mareche J.-F., Bellouard C., Loupias G., Lagrange P.Superconductivity in Li3Ca2C6 intercalated graphite // J. of Sol. St. Chem.
2006.V. 179. N. 4. P. 1289-1292.59. Boehm H.P., Setton R., Stumpp E. Nomenclature and terminology of graphiteintercalation compounds // Carbon. 1986. V. 24. N. 2. P. 241-245.60. Boehm H.P., Setton R., Stumpp E. Nomenclature and terminology of graphiteintercalation compounds // Pure & Appl. Chem. 1994.
V. 66. N. 9. P. 1893-1901.61. Schafhaeutl C. Ueber die Verbindungen des Kohlenstoffes mit Silicium, Eisenund anderen Metallen, welche die verschiedenen Gatiungen von Roheisen, Stahlund Schmiedeeisen bilden // Journ. f. prakt. Chemie. 1840. V. 21. № 3. P. 129-157.62. Boehm H.P., Stumpp E. Citation errors concerning the first report on exfoliatedgraphite // Carbon. 2007. V. 45. P. 1381-1383.63. German Patent № 66804. Verfahren zur Aufbereitung von Graphit / Luzi W.
–1891.64. Patent US 1137373, C 04 B 35/536. Expanded graphite and composition thereof / Aylsworth J.W. – № 770680; publ. 27.04.1915.65. Patent US 1191383, C 04 B 35/536. Expanded graphite / Aylsworth J.W. –№ 770689; publ. 18.07.1916.66. Bianco A., Cheng H.-M., Enoki T., Gogotsi Y., Hurt R.H., Koratkar N., Kyotani T., Monthioux M., Park Ch.R., Tascon J.M.D., Zhang J. All in the graphenefamily – A recommended nomenclature for two-dimensional carbon materials //Carbon. 2013. V. 65.
P. 1-6.67. Свойства конструкционных материалов на основе углерода. / Под ред.Соседова В.П. – М.: Металлургия, 1975. – 336 с.68. Шумилова Т.Г. Минералогия самородного углерода. – Екатеринбург:УрО РАН, 2003. – 315 с. ISBN 5-7691-1347-2.- 341 69. Уббелоде А.Р., Льюис Ф.А. Графит и его кристаллические соединения. –М.: Мир, 1965. – 256 с.70. Углерод: минералогия, геохимия и космохимия: Материалы Международной конференции. – Сыктывкар: Геопринт, 2003. – 302 с.71. Bukalov S.S., Aysin R.R., Leites L.A., Eremyashev V.E.
Discovery of cubicdiamond and sp2 carbon micro-particles in ―Chelyabinsk‖ meteorite by Raman micro-mapping // Carbon. 2013. V. 64. P. 548-550.72. Hall A.W. A new method of X-ray crystal analysis // Phys. Rev. 1917. V. 10.N. 6. P. 661-697.73. Bernal J.D. The structure of graphite // Proc. Roy. Soc. London A. 1924.V. 106. N. 740.
P. 749-773.74. Baskin Y., Meyer J. Lattice constants of graphite at low temperatures // Phys.Rev. 1955. V. 100. N. 2. P. 544.75. Bacon G.E. The interlayer spacing of graphite // Acta Cryst. 1951. V. 4. N. 6.P. 558-561.76. Franklin R.E. The structure of graphitic carbons // Acta Cryst. 1951. V.
4.P. 253-256.77. Ruland W. X-Ray study of graphitic carbons // Acta Cryst. 1965. V. 18.P. 992-996.78. Lipson H., Stokes A.R. The structure of graphite // Proc. Roy. Soc. London A.1942. V. 181. P. 101-105.79. Шулепов С.В. Физика углеродных материалов. – Челябинск: Металлургия, 1990.
– 336 с.80. Синицына О.В., Яминский И.В.Зондовая микроскопия поверхности графита с атомным разрешением // Успехи химии. 2006. Т. 75. № 1. С. 27-35.81. Paredes J.I., Martynez-Alonso A., Tascon J.M.D. Triangular versus honeycomb structure in atomic-resolution STM images of graphite // Carbon. 2001.V. 39.
P. 476-479.82. Bayot V., Piraux L., Michenaud J.-P., Issi J.-P., Lelaurain M., Moor A. Two-- 342 dimensional weak localization in partially graphitic carbon // Phys. Rev. B. 1990.V. 41. N. 17. P. 11770-11779.83. Simonis P., Goffaux C., Thiry P.A., Biro L.P., Lambin Ph., Meunier V. STMstudy of a grain boundary in graphite // Surface Science. 2002. V. 511. P. 319-322.84. Stone A.J., Wales D.J. Theoretical studies of icosahedral C60 and some relatedspecies // Chem. Phys.