Диссертация (1097499), страница 33
Текст из файла (страница 33)
1980. V. 19, No. 2. P. 231-241.22. Yon J.J., Barla K., Herino R., Bomchil G. The kinetics and mechanism ofoxide laye formation from porous silicon formed on p -Si substrates // J.Appl. Phys. 1987. V. 62, No. 3. P. 1042-1048.23. Nakamura M., Mochizuki Y., Usami K., Itoh Y., Nozaki T. Infraredabsorption spectra and compositions of evaporated silicon oxides (SiOx )// Sol. St. Comm.
1984. V. 50, No. 12. P. 1079-1081.24. Èâàíîâ Ä. À. è äð. Ïîëó÷åíèå è ýëåêòðîííîìèêðîñêîïè÷åñêîå èññëåäîâàíèå îêèñëåííûõ ïëåíîê ïîðèñòîãî êðåìíèÿ / Ä. A. Èâàíîâ, Â. A.Meëüíèêîâ, Ë. A. Ãoëoâaíü è äð. Ïîëó÷åíèå è ýëåêòðîííîìèêðîñêîïè÷åñêîå èññëåäîâàíèå îêèñëåííûõ ïë¼íîê ïîðèñòîãî êðåìíèÿ// XXÐîññèéñêàÿ êîíôåðåíöèÿ ïî ýëåêòðîííîé ìèêðîñêîïèè. Ñáîðíèê òåçèñîâ. ×åðíîãîëîâêà, 2004. Ñ. 33.25.
Sutherland R. L. Handbook on Nonlinear Optics. New York: Dekker,1996. 685 p.22826. Erne B. High quantum yield III-V photoanodes: PhD. thesis, Universityof Utrecht, Utrecht, the Netherlands, 1995. 156 p.27. Tjerkstra R. W., Gomez Rivas J., Vanmaekelbergh D., Kelly J. J. PorousGaP multilayers formed by electrochemical etching // Electrochemical andSolid-State Letters. 2002. V. 5, No.
5. P. G32-G37.28. Bret B. P. J. Multiple light scattering in porous gallium phosphide: PhD.thesis, University of Twente, Enschede, the Netherlands, 2005. 144 p.29. Áåëîãîðîõîâ À. È., Êàðàâàíñêèé Â. À., Îáðàçöîâ À. Í., ÒèìîøåíêîÂ. Þ. Èíòåíñèâíàÿ ôîòîëþìèíåñöåíöèÿ â ïîðèñòîì ôîñôèäå ãàëëèÿ// Ïèñüìà â ÆÝÒÔ. 1994. Ò. 60, âûï.4. Ñ. 262-266.30. Çîòååâ À. Â., Êàøêàðîâ Ï. Ê., Îáðàçöîâ À. Í., Òèìîøåíêî Â. Þ.Ýëåêòðîõèìè÷åñêîå ôîðìèðîâàíèå è îïòè÷åñêèå ñâîéñòâà ïîðèñòîãîôîñôèäà ãàëëèÿ // ÔÒÏ. 1996. Ò. 30, âûï. 8.
Ñ. 1473-1478.31. Tiginyanu I. M., Kravetsky I. V., Monecke J., Cordts W., Marowsky G.,Hartnagel H. L. Semiconductor sieves as nonlinear optical materials //Appl. Phys. Lett. 2000. V. 77, No. 15. P. 2415-2417.32. Ãîëîâàíü Ë. À., Ìåëüíèêîâ Â. À., Êîíîðîâ Ñ. Î., Ôåäîòîâ À. Á., Ãàâðèëîâ Ñ. À., Æåëòèêîâ À. Ì., Êàøêàðîâ Ï. Ê., Òèìîøåíêî Â. Þ.,Ïåòðîâ Ã.
È., Ëè Ë., ßêîâëåâ Â. Â. Ýôôåêòèâíàÿ ãåíåðàöèÿ âòîðîéãàðìîíèêè ïðè ðàññåÿíèè â ïîðèñòîì ôîñôèäå ãàëëèÿ // Ïèñüìà âÆÝÒÔ. 2003. Ò. 78, âûï. 3-4. Ñ. 229-233.33. Mel'nikov V.A., Golovan L.A., Konorov S.O., Muzychenko D.A., FedotovA.B., Zheltikov A.M., Timoshenko V.Yu., Kashkarov P.K. Secondharmonic generation in strongly scattering porous gallium phosphide //Appl. Phys. B. 2004. Vol.
79, No. 2. P. 225 - 228.34. Saito M., Miyagi M. Anisotropic optical loss and birefringence of anodizedalumina lm // JOSA A. 1989. V. 6, No. 12, P. 1895-1901.22935. Masuda H., Yada K., Osaka A. Self-ordering of cell conguration of anodicporous alumina with large-size pores in phosphoric acid solution // Jpn.J. Appl. Phys.
1998. V. 37, No. 11A. P. L1340-L134236. Jessensky O., Muller F., Gosele U. Self-organized formation of hexagonalpore arrays in anodic alumina // Appl. Phys. Lett. 1998. V. 72, No.10. P. 1173-1175.37. De Laet J. , Terryn H., Vereecken J. Development of an optical model forsteady state porous lms on aluminium formed in phosphoric acid // Thinsolid lms. 1998. V. 320. P. 241-252.38. Yasui K., Nishio K., Nunokawa H., Masuda H.
Ideally ordered anodicporous alumina with sub-50 nm hole intervals based on imprinting usingmetal molds // J. Vac. Sci. Tech. B. 2005. V. 23, No. 4. P. L9 - L12.39. Sakoda K. Optical Properties of Photonic Crystals. Berlin - Heidelberg:Springer, 2001. - 226 p.40. Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physicsand Electronics // Phys. Rev. Lett. 1987. V.
58, no. 20 . P. 2059-2062.41. John S. Strong localization of photons in certain disordered dielectricsuperlattices // Phys. Rev. Lett . 1987 . V. 58, No. 23 . P. 2486 2489.42. Ãàïîíåíêî Ñ.Â. Ôîòîííûå êðèñòàëëû / â À.Â. Ô¼äîðîâ (ðåä.) Îïòèêàíàíîñòðóêòóð. ÑÏá.: Íåäðà, 2005. Ñ. 1-48.43.
Masuda H., Ohya M., Ason H. Nakao M., Nohtomi M., Tamamura T.Photonic crystal using anodic porous alumina // Jpn. J. Appl. Phys.1999. V. 38, No. 12. P. L1403-L1405.44. Masuda H., Ohya M., Ason H., Nishio K. Photonic band gap in naturallyoccurring ordered anodic porous alumina // Jpn. J. Appl. Phys. 2001.V. 40, No. 11B. P. L1217-L1219.23045. Ìåëüíèêîâ Â.À., Ë.À. Ãîëîâàíü Ë.À., Òèìîøåíêî Â.Þ., Êàøêàðîâ Ï.Ê., Ãàâðèëîâ Ñ.À., Êðàâ÷åíêî Ä.À., Ïàðõîìåíêî Þ.Í., Ñêðûëåâà Å.À.. Îïòè÷åñêàÿ àíèçîòðîïèÿ è ôîòîííàÿ çàïðåùåííàÿ çîíà âñëîÿõ ïîðèñòîãî îêñèäà àëþìèíèÿ // Âåñòíèê Ìîñêîâñêîãî óíèâåðñèòåòà, Ñåð.
Ôèçè÷åñêàÿ. 2003. 4. C.43 - 4746. Mikulskas I., Juodkazis S., Jagminas A., Meskinis S., Dumas J. D.,Vaitkus J., Tomasiunas R. Aluminium oxide lm for 2D photonicstructure: room temperature formation // Opt. Mat. 2001. V. 17. P.343 - 346.47. Vincent G. Optical properties of porous silicon superlattices // Appl. Phys.Lett. 1994. V. 64, No. 18. P.2367-2369.48. Setzu S., Solsona P., Letant S., Romestain R., Vial J.C. Microcavityeect on dye impregnated porous silicon samples // Eur. Phys.
J. AppliedPhysics. 1999. V. 7 . P. 59-63.49. Pavesi L., Panzarini G., Andreani L.C. All-porous silicon-coupledmicrocavities: experiment versus theory // Phys. Rev. B. 1998. V. 58,No. 23. P. 15794-15800.50. Reece P.J., Lerondel G., Zheng W.H., Gal M. Optical microcavities withsubnanometer linewidth based on porous silicon // Appl. Phys.
Lett. 2002. V. 81, No. 26. P. 4895-489751. Kruger M., Berger M. G., Marso M., Reetz W., Eickho Th., Loo R.,Vescan L., Thonissen M., Luth H., Arens-Fisher R., Hilbrich S., Theiß W.Color-sensitive Si-photodiode using porous silicon interference lters //Jpn.
J. Appl. Phys. 1997. V. 36. P. L24-L26.52. Zangooie S., Janson R., Arwin H. Reversible and irreversible control ofoptical properties of porous silicon superlattices by thermal oxidation,vapor adsorption, and liquid penetration // J. Vac. Sci. Technol. A.1998. V. 16. P. 2901-2912.23153. Canham L., Stewart M. P., Buriak J. M., Reeves C.
L., Anderson M.,Squire E. K., Allcock P., Snow P. A. Derivatized porous silicon mirrors:implantable optical components with slow resorbability // Phys. Stat. Sol.(a). 2000. V. 182. P. 521-525.54. Chan S., Fauchet P. M., Li Y., Rothberg L. J., Miller B.
L. Porous siliconmicrocavities for biosensing applications // Phys. Stat. Sol. (a). 2000.V. 182. P. 541-546.55. Mattei G., Alieva E. V., Petrov J. E., Yakovlev V. A. Enchancement ofadsorbate vibration due to interaction with microcavity mode in poroussilicon superlattice // Surf. Sci. 1999. V. 427-428. P. 235-238.56. Kuzik L.
A., Yakovlev V. A., Mattei G. Raman scattering enhancement inporous silicon microcavity // Appl. Phys. Lett. 1999. V. 75, No. 13.P. 1830-1832.57. Saarinen J. J., Weiss S. M., Fauchet P. M., Sipe J. E. Optical sensor basedon resonant porous silicon structures // Optics Express. 2005. V. 13,No.
10. P. 3754-3764.58. Guillermain E., Lysenko V., Orobtchouk R., Benyattou T., Roux S.,Pillonnet A., Perriat P. Bragg surface wave device based on porous siliconand its application for sensing // Appl. Phys. Lett. 2007. V. 90,No. 24. P. 241116-1 - 241116-3.59. Lerondel G., Romestain R., Vial J. C., Thonissen M. Porous silicon lateralsuperlattices // Appl.
Phys. Lett. 1997. V. 71, No. 2. P. 196-198.60. Gruning U., Lehmann V. Fabrication of 2-D infrared Photonic Crystalsin macroporous silicon./ in Soukoulis C. M. (Ed.) Photonic Band GapMaterials, Dordrecht: Kluwer, 1996.P. 453-464.61. Schilling J., Muller F., Matthias S., Wehrspohn R. B., Gosele U., Busch K.Three-dimensional photonic crystals based on macroporous silicon with232modulated pore diameter // Appl.
Phys. Lett. 2001. V. 78, No. 9 P.1180-1182.62. Matthias S., Muller F., Gosele U. Simple cubic three-dimensional photoniccrystals based on macroporous silicon and anisotropic posttreatment // J.Appl. Phys. 2005. V. 98, No. 2. P. 023524-1 - 023524-1.63. Schilling J., Birner A., Muller F., Wehrspohn R. B., Hillebrand R.,Gosele U., Busch K., John S., Leonard S. W., van Driel H. M.Optical characterisation of 2D macroporous silicon photonic crystals withbandgaps around 3.5 and 1.3 µm // Opt.
Materials. 2001. V. 17,No. 1-2. P. 7-10.64. Richter S., Hillebrand R., Jamois C., Zacharias M., Gosele U.,Schweizer S. L., Periodically arranged point defects in two-dimensionalphotonic crystals // Phys. Rev. B. 2004. V. 70, No. 19. P. 193302-1- 193302-4.65. Genereux F., Leonard S.W., van Driel H.M., Birner A., Gosele U. Largebirefringence in two-dimensional silicon photonic crystals // Phys. Rev.B. 2001. V. 63. P. 161101-1 - 161101-4.66. Ãóê Å.Ã., Òêà÷åíêî À.Ã., Òîêðàíîâà Í.À., Ãðàíèöûíà Ë.Ñ., Àñòðîâà Å.Â., Ïîäëàñêèí Á.Ã., Íàùåêèí À.Â., Øóëüïèíà È.Ë., Ðóòêîâñêèé Ñ.Â. Êðåìíèåâûå ñòðóêòóðû ñ äèýëåêòðè÷åñêîé èçîëÿöèåé,ïîëó÷åííûå âåðòèêàëüíûì àíèçîòðîïíûì òðàâëåíèåì // Ïèñüìà âÆÝÒÔ. 2001. T.
27, âûï. 9. C. 64-71.67. Òîëìà÷åâ Â.À., Ãðàíèöûíà Ë.Ñ., Âëàñîâà Å.Í., Âîë÷åê Á.Ç., Íàùåêèí À.Â., Ðåìåíþê À.Ä., Àñòðîâà Å.Â. Îäíîìåðíûé ôîòîííûé êðèñòàëë, ïîëó÷åííûé ñ ïîìîùüþ âåðòèêàëüíîãî àíèçîòðîïíîãî òðàâëåíèÿ êðåìíèÿ // ÔÒÏ. 2002. Ò. 36, âûï. 8. C. 996-1000.68. Àñòðîâà E.Â., Perova T.S., Òîëìà÷åâ Â.À., Ðåìåíþê À.Ä., Vij J.,Moore A. Äâóëó÷åïðåëîìëåíèå èíôðàêðàñíîãî ñâåòà â èñêóññòâåííîì233êðèñòàëëå, ïîëó÷åííîì ñ ïîìîùüþ àíèçîòðîïíîãî òðàâëåíèÿ êðåìíèÿ// ÔÒÏ.
2003. Ò. 37, âûï. 4. C. 417-421.69. Kendall D.L. Vertical etching of silicon at very high aspect ratios // Ann.Rev. Mater. Sci. 1979. V. 9. P. 373-403.70. Ðåìåíþê À.Ä., Àñòðîâà E.Â., Âèòìàí Ð.Ô., Perova T.S., Òîëìà÷åâ Â.À.,Vij J. Èññëåäîâàíèå îðèåíòàöèè æèäêîêðèñòàëëè÷åñêîé ñìåñè E7 âêîìïîçèòíûõ ôîòîííûõ êðèñòàëëàõ íà îñíîâå ìîíîêðèñòàëëè÷åñêîãîêðåìíèÿ // Ôèçèêà òâåðäîãî òåëà . 2006 . T. 48, âûï. 2 .
C. 361-367.71. Êðóòêîâà Å.Þ., Òèìîøåíêî Â.Þ., Ãîëîâàíü Ë.À., Êàøêàðîâ Ï.Ê.,Àñòðîâà Å.Â., Ïåðîâà Ò.Ñ., Ãîðøóíîâ Á.Ï., Âîëêîâ À.À. Èíôðàêðàñíàÿ è ñóáìèëëèìåòðîâàÿ ñïåêòðîñêîïèÿ ùåëåâûõ êðåìíèåâûõ ñòðóêòóð. // ÔÒÏ. 2006. Ò. 40, âûï. 7. Ñ. 855 - 860.72. Sipe J. E., Boyd R.W. Nanocomposite Materials for Nonlinear OpticsBased on Local Field Eects. / in V. M. Shalaev (Ed.). Optical Propertiesof Nanostructured Random Media.
Topics Appl. Phys. 2002 .- V. 82.P. 119 . Berlin Heidelberg: Springer-Verlag, 200273. Áîðí Ì., Âîëüô Ý. Îñíîâû îïòèêè. Ì.: Íàóêà, 1970. 856 c.74. ßðèâ À., Þõ. Ï. Îïòè÷åñêèå âîëíû â êðèñòàëëàõ. Ì.: Íàóêà, 1987. 616 c.75. Wiener O. Die Theorie des Mischkorpers fur das Feld der statonarenStromung i. die mittelwertsatze fur Kraft, Polarisation und Energie //Der Abhandlungen der Mathematisch- Physischen Klasse der Konigl.Sachsischen Gesellschaft der Wissenschaften. 1912. B. 32. S.509-604.76.