Главная » Просмотр файлов » Павлов В.Н., Ногин В.Н. Схемотехника аналоговых электронных устройств (2-е издание, 2001)

Павлов В.Н., Ногин В.Н. Схемотехника аналоговых электронных устройств (2-е издание, 2001) (1095416), страница 58

Файл №1095416 Павлов В.Н., Ногин В.Н. Схемотехника аналоговых электронных устройств (2-е издание, 2001) (Павлов В.Н., Ногин В.Н. Схемотехника аналоговых электронных устройств (2-е издание, 2001)) 58 страницаПавлов В.Н., Ногин В.Н. Схемотехника аналоговых электронных устройств (2-е издание, 2001) (1095416) страница 582018-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 58)

В ситуациях, когда частота /„сушественио больше частоты/,«„ влнянием дополнительного »нервно»ного звена можно пренебречь, приняв /И> (/) .=-1. В случаях, когда частота /„ соизмерима с /„,, расчет параметра /, с помошью соотношений таблип 13.! — 13.3 следует выполнять прн значении /„учитыва>оп1ем влияния доно.>- иительиого инерпиоииого звена на полосу проиускания рассмат. риваемого участка тракта. Это значение согласно (6.15) ма>к>и вычислить по формуле При нычислеииях интегрального шума следует исключи гь пз рассмотрения и подвергнуть более детальному анализу аналитические модели ироиессов его формирования в ситуаш>ях, при кгторых собственные интегралы (!3.!9), (1320), (13.23) н (13.24) расходятся. Расходимость этих интегралов указывает на то, что аналитическое описание этих процессов ие соответствует действи. тельиости. К такой ситуации, например, может быть отнесен случай воздействия шума со спектром 1//" при а '>1 иа )силнтельный тракт с ненулевым коэффнпнентом передачи нв нулевой часготе.

а также ситуации, при которых в подынтегральных функциях выражений (! 3.19), (13.20), (13.23) и (13 24) наибольшая степе», аргумента / в числителе превьииает соответствуюшее значение в з и а и е и а тел е. Например, шумы со спектром вида 1//" прн а>!„явля>отся математической абстракцией и могут соотве>ствовать реально про. текаюшим процессам лишь в ограниченной частотной области нз частотах /(1/2лТ„где Т,— время наблюдения илн принятия решения в анализируемом электронном устройстве. В практике ра.

боты этих устройств время Т, всегда ограничено (ие равно бес. конечности), в результате чего математическая иптерпретаиия спектров, требу>ощая интегрирования в бесконечных вреде,тах. вступает в против»речение с возможностью реализации зто>о времени.

Вследствие этого результат воздейсп»ш шумов типа «и>- быточиый шум>. со спектром 1// иа усилительный тракт, построенный по схеме УПТ, следует рассматривать как матеъ>атическу>о абсгракцн>о, которая отвечает действительности лишь н случае, когда этот тракт выступает ьак фильтр верхних частот с нижней граниией полосы пропускания />ь где /„— приближенное значение нижней гранины эквивалентной полосы пропускаиия, определяс мое формулой /,=-1/2лТ,, Как правило, шумовое иаира>кение на выходе обусловливзет.я совместным воздействием иа усилительный тракт ие одного, а 2а4 ,;нескольких источников шума.

Результирующее напряжение аз,.„, :;от совместного воздействия л независимых источников шумового :;,!!априжения н гп независимых источников шумового тока соглас:,",но (!3.2), (13.13), (13.25) н (13.25) можно вычислизь но форл!уле 1 зз ".и, ь = ~ Ко.5;. (Лз.) Л. + 'Ь' ~о'„~з. (Ь.) Уе нг')'„' (.1о) (13.35) з —..1 »=1 :"~де Ко„— коэффиз!иннент передачи напряжения от зажимов, и кофхо[зым подключен п-й источник шУлза, до выхода; 5„,(7„з ), )йл, (Г„») — значение спектральной плотности и-го источника шума ;ма частоте 1»з» !зли !зз»', )зз — значение параметра ), для этих ис:точников, вычисленное в соответствии с (13.23), (13.24), или со!!От!гашений, приведенных в табл.

13.1 — 13.3, Пример 13.4. Вычислить действующее значение а,»„шума, наблюдаемого иа :;!Выходе широкополосного тракта в случае, когда в качестве входного его каска',."да выступает каскад, шумовые свойства которого были рассмотрены в предыду;!!щем примере. Усншослгпый тракт в целом обладаез следующими свойствами: .";.'Кв=-3010, 1,==300 кГц, 77 2, 1,=300 Гц. Резззгнззе.

1. В соответствии с табл, ! 3.! и данньпип о фильтрующих свойствах 1:Успшьтсльноз.о тРакта вычислим значение папаметга 1», отвечающее пРохожде!змию частотно независимых 5„з составляющих ш)нового спектра 5, „. При вычис'лениях пренебрежем обуязающим влиянием на нз)ч аз раппченной протяженности !АЧХ в области низких частот, полагая 1„=0 В атом сзучае )„=!аз[2) =ЗОО. Юз.! 22~370 лГц. 2. В соотоетствпп с табл.

13.2, составленной для а)0, вычислим значение панрамстра 1.г, отвечавшее прохозлденню через рассматриваемый тракт часготио:аавнспмой состаоляющей 5ю[!) п|умового спектра 5, „, Прн а=-!, аз=2, 1 ',=300 кГц, !з=-300 Гц, тз=1Д„[)з2 — 1) =300.10 /300[)з2 — 1) =2400, !з=.) кГц Узт 'Ув [Уз(гв)з [!п '1з .1)[$ 2 — 1) 2 =— 300 10(!00300 !О)'(1и 24[ХИ вЂ” 1Ц)'2 — 1)!2=10 Гц. 3 Можно принять, что заметный вклад в общий шуи иа выходе вносит толь:ко шзмы первого каскада. С учетом этого н (!3.35) и з Квз5 з[н+Кз 5ы[ з= [30 !О )з10 '" 370 10 + 4(ЗО !Оз)з[0 зз Ю ЗЗ !О-в[9 1О-г ЗЗ 10-'Вз[гзгз п,,~57 мВ.

Пример 13.5 В»шпсл»ть действующее значгипс и, . шума на выходе схемы рис. 11.12 для рассмотренного в примерах 13 3 я 13.4 варианта ее построения, когда использонавный в ней ОУ осзладаст частотамн сре:а Вез=5 Гц, йзз.=2 МГц и номинальным коэффициентом усиления Кзр 10'. Вычисления осуществить при:менительно к случаю, когда время наблюдения (время принятия резиення) 'Т,.— - 1О-' с.

285 Реигение 1, Оценим эквивалентные (по отношению к источникам входньж шумов) фильтрующие свойства рассматриваемого схемного построения, для этого вычислим фактическое Рз и прелельное Ре значении глубины ОС: Ре=-1+Та=(+Клой /(/( +2») =1+10'10 /(1О'+1(И) =5000; Ран=/,м/2/,л,-— -2.!О'/2-5 —.. 20 10з Сопоставление найденных значений Ра и /а. показывает, что фактическое значение глубины ОС существенно меньше предельного ее значения. Поэтому с точки зрения фильтрующего воздействия рассматриваемой схемы на источники шума ее можно представить в виде фильтра первого порядка (/У=!] с нормиро- ванной АЧХ типа (13.20) н частотой среза / =/ши /срРа=5.5000=25 кГц Здесь же оггенилг эквивалентное (для времени паблюдепгщ Т„) значение ниж- ней границы полосы пропусканпя.

/»=1/2пТ»=1/2п.10 з~)60 Гц. 2, Найденный в примере 13.4 шумовой спектр включает две шумовые состав лжощие, спектр одной из которых частотно-независим (а=о). а второй — частот- но.убывающий (а=1). Значение энергетической полосы пропускання /и для пер- вой составляющей определяет пятая строка табл. !3.1, согласно которой /н =/,и/2(1+/„//.) =25-10'и/2(1 — 160/25.

10з) 40 кГц, а для второй — четвертая строка табл. 13 2, согласно которой /м=/в(й//в) Ь (/»//,) =25.10'(!/25 10') 1п (25.1(И/1) 10 Гц Прп вычислении /,т в качестве значения частоты /~ условно принята значение, равное 1 Гц В этом случае в соответствии с результатами вычислений, проведен. ных и примере 134, параметр Зн(/,)=10-ыЛт/Гц 3. Вычисляем значение полной проводимости, па которую нагружены источ- ники шумового тока, при этом считаем, что проводимость имеет вещественнкиг характер У~(/е) =й =1//(~+1/Та=1/10»+1/!От=2.10-з См 4. Вычисляем в соответствии с (13.351 искомое действующее значение шумо ного напряжения на выходе рассматриваемой схемы, при этом учитываем, что в схеме действует ООС глубиной Та=5000, в результате чего коэффициент передачи К~ К а/Ра= 10т/5000 2 от»»»=КотЗгАг/йчт+КатЗ„л(/и)/ /о т =2т/6,3 10 'т 40/!О'/(2/10 з)тж2т )о-м.)ОП2 10-з)т= =-2.5 10 т Вт/Гц; и»» ~! 60 мМ.

13.4. МЕТОДИКА ПРИБЛИЖЕННОГО ВЫЧИСЛЕНИЯ ИНТЕГРАЛЬНОГО ШУМА НА ВЫХОДЕ ФИЛЬТРУЮЩЕИ ЦЕПИ Как уже отмечалось, непосредственные вычисления действуюгдего значения шума с помощью (13.19) или (13.20) связаны с олределеннымн трудностями, особенно в случаях, когда усилитель- 266 соответствуют следующие аналитические соотношения: М'(Д ж 1 при у су„; (13.37у )4а(~) ~ (У/Ую)а при ~= 'У.о Фильтру верхних частот с нормированной АЧХ ! Ма(~) = ! )+(Уиа)У)'1 ~ (! З.ЗЗ) — соотношения Ма (У) ж (~//;а)а и Ри У .,У„,; (13.ЗЯу М(у)ж1 прн /'> /'„,. Частотно-корректирующему звену с нормированной АЧХ впда М'(Л =- 1+ (У/У. )' — соотношения (! 3.40) Ма(г) ж(//./м) при / = ~„о Формулы, аналогичные (!3.36) — (1340), могут быть использованы для описания частотных свойств нормированных характерис- 287 ч!а(у) ям! прн /(~„, ,ный тракт представляет собой многозвепную фнльтрующую цепь...

а спектр рассматриваемого шумового источника имеет существен'Ную частотную зависимость. Следует также отметить, что приводимые в табл. 13.1 — !З.З данные охватывают лишь ограниченное число возможных ситуаций. Поэтому использование этих данных :при проведении вычислений в соответствии с (13.25) и (13.26) не :всегда возможно. В связи с указанными обстоятельствами представляет практи.ческий интерес методика приближенных вычислений, применение. -'которой хотя и связано с появлением некоторых погрешностей в 'результатах проводимых на ее основе вычислений, но имеет практически неограниченную область возможного применения.

Мето:дика приближенных вычислений основывается иа том, что график логарифмической АЧХ миогозвенной фильтруюшей цепи с приемлемой для практики точностью может быть аппроксимнрован ломаной линией. При этом число изломов (перегибов) этой аппроксимирующей линии равно суммарному числу частот среза нормированной АЧХ. Аппроксимация хода нормированной АЧХ ломаной линией может быть представлена в аналитическом виде. Фильтру нижних частот с нормированной АЧХ Ма У) (13.36) !! + (у/Ув1)21'ч тик проводимостей и сопротивлений. Так, нормированная частотная зависимость (!3.7) проводимости У„х аппроксимируется соотношениями М' (~) ж 1 при г" < г"; (13 41) А4г(г) ж(~х//' ) при У ) У„.

Характеристики

Тип файла
DJVU-файл
Размер
5,34 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее