Вся теория (1094484), страница 2

Файл №1094484 Вся теория (Вся теория) 2 страницаВся теория (1094484) страница 22018-02-15СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В этом случае кинетика пр-са подчин. 1му закону Фика: кол-во продифундировавшего ве-ва пропорционально пл-ди перпендикулярной напряж. Диффузионного потока и временем,т.е.

dM=-D* (dM-кол-во продифунд.ве-ва;D-коэф.диффузии,

D-показывает какое кол-во ве-ва дифундирует через пов-ть в 1м2 в течении 1сек. При разности концентраций на расстоянии 1м=1

Размерность D зависит от 1,от агрегатного состояния сис-мы,2. С увелеичением температ.коэф. диффузии увеличивается.3 с увелич.давления коэф.дифуз.уменьшается.

2.Ковективная диффузия.

В основу рассмотрения явления конвективной диффузии поло­жена теория диффузионного граничного слоя, которую разделяют большинство ученых Советского Союза.

Рис. 11-10. К формули­ровке закона конвектив­ной диффузии.

Согласно этой теории (рис. 11-10), распре­деляемое вещество переносится из ядра по­тока жидкости к границе раздела фаз непо­средственно потоками жидкости и молеку­лярной диффузией. При этом воспринимаю- Гг( щая распределяемое вещество фаза считается либо твердой, либо близкой к ней (по спо­собности гасить турбулентные пульсации потока). В рассматриваемой системе поток можно считать состоящим из двух частей: ядра и граничного диффузионного слоя. В ядре перенос вещества осуществляется преимущественно токами жидкости и в усло­виях достаточной турбулентности течения; концентрация распределяемого вещества в данном сечении и в условиях стационар­ного режима сохраняется постоянной. По мере приближения к граничному диффузионному слою турбулентность и, следова­тельно, турбулентный перенос затухают, с приближением к гра­нице начинает превалировать перенос за счет молекулярной диффу­зии. Соответственно этому появляется градиент концентрации рас­пределяемого вещества, растущий по мере приближения к границе. Таким образом, область граничного диффузионного слоя — это область появления и роста градиента концентрации, область увели­чения молекулярной диффузии от пренебрежимо малого значения до максимального.

Если рассмотреть элементарный объем фазы (рис. 11-9), переме­щающийся в граничном диффузионном слое, то станет очевидной возможность утверждать, что концентрация распределяемого веще­ства в нем меняется не только за счет молекулярной диффузии, но также и за счет механического переноса его из одной зоны кон­центрации в другую. В этом случае концентрация распределяемого вещества будет функцией не только пространственных координат и времени, как в случае только молекулярной диффузии, но и ком­понентов скорости перемещения элемента.

Соответственно этому изменение анализируемого параметра — концентрации С надлежит выразить через субстанциональную производную

DcC/=c/+Cx*wx+C/y*wy+C/z*wz

При использовании субстанциональной производной прираще­ние количеств распределяемого вещества в элементе за время может быть выражено как

dM= DcC/*dx*dy*dz

Приращение количества распределяемого вещества за счет моле­кулярной диффузии определяется равенством (11.44). Приравнивая правые части равенств (11.44) и (11.50), получим уравнение конвек­тивной диффузии:

C/+C/x*wx+C/y*wy+C/z*wz=D( 2C/x 2+ 2C/y 2+ +2C/xz2)



7.Дифференциальные уравнения молекулярной и конвективной диффузии.

Дифференциальное уравнение молекулярной диффузии (второй закон Фика)

Для вы пода дифференциального уравнения молекулярной диф­фузии выделим в неподвижной среде или в движущемся ламинарном потоке элементарный параллелепипед с ребрами dх, dу и dz (рис. 11-9).

Если через этот элементарный параллелепипед за счет молекуляр­ной диффузии перемещается распределяемое вещество, то через левую, заднюю и нижнюю грани за время d в него входят количе­ства вещества соответственно Мх, Му и Мz, а через противополож­ные грани — правую, переднюю и верхнюю — выходят количества вещества соответственно Мх+dх, Му+dу и Мг+dz. Следова­тельно, элемент за время d приобретает диффундирующее вещество в количестве

dM = х - Мх+dх) + (МУ- Му+dу) + {МгMz+dz)

При этом концентрация диффундирующего вещества повышается на С/*d

Согласно основному закону молекулярной диффузии

Мx=-D*C/x*dy*dz*d




Рис. 11-9. К выводу дифференциального уравнения молекул. диффуз



И Mx+dx=-D* 2C/x2*dx*dy*dz*d

И,следовательно Мx-Mx+dx=D*2C/ x2*dx*dy*dz*d

Аналогично найдем

МуМу+dу= D*2C/ x2*dx*dy*dz*d

МzМz+dz= D*2C/ x2*dx*dy*dz*d

Складывая левые и правые части трех последних равенств, полу­чим

dM=D(2C/x2+2C/dy2+2C/ z2)*dx*dy*dz* d

С другой стороны, ту же прибыль количества диффундирующего вещества в элементе можно найти умножением объема элемента на изменение концентрации за время d, т. е.

dM=dx*dy*dz*C/*d

Сопоставляя соотношения (11.44) и (11.45), получим дифферен­циальное уравнение молекулярной диффузии:

C/=D(2C/x2+2C/dy2+2C/ z2)

2.Ковективная диффузия.

В основу рассмотрения явления конвективной диффузии поло­жена теория диффузионного граничного слоя, которую разделяют большинство ученых Советского Союза.

Рис. 11-10. К формули­ровке закона конвектив­ной диффузии.

Согласно этой теории (рис. 11-10), распре­деляемое вещество переносится из ядра по­тока жидкости к границе раздела фаз непо­средственно потоками жидкости и молеку­лярной диффузией. При этом воспринимаю- Гг( щая распределяемое вещество фаза считается либо твердой, либо близкой к ней (по спо­собности гасить турбулентные пульсации потока). В рассматриваемой системе поток можно считать состоящим из двух частей: ядра и граничного диффузионного слоя. В ядре перенос вещества осуществляется преимущественно токами жидкости и в усло­виях достаточной турбулентности течения; концентрация распределяемого вещества в данном сечении и в условиях стационар­ного режима сохраняется постоянной. По мере приближения к граничному диффузионному слою турбулентность и, следова­тельно, турбулентный перенос затухают, с приближением к гра­нице начинает превалировать перенос за счет молекулярной диффу­зии. Соответственно этому появляется градиент концентрации рас­пределяемого вещества, растущий по мере приближения к границе. Таким образом, область граничного диффузионного слоя — это область появления и роста градиента концентрации, область увели­чения молекулярной диффузии от пренебрежимо малого значения до максимального.

Если рассмотреть элементарный объем фазы (рис. 11-9), переме­щающийся в граничном диффузионном слое, то станет очевидной возможность утверждать, что концентрация распределяемого веще­ства в нем меняется не только за счет молекулярной диффузии, но также и за счет механического переноса его из одной зоны кон­центрации в другую. В этом случае концентрация распределяемого вещества будет функцией не только пространственных координат и времени, как в случае только молекулярной диффузии, но и ком­понентов скорости перемещения элемента.

Соответственно этому изменение анализируемого параметра — концентрации С надлежит выразить через субстанциональную производную

DcC/=c/+Cx*wx+C/y*wy+C/z*wz

При использовании субстанциональной производной прираще­ние количеств распределяемого вещества в элементе за время может быть выражено как

dM= DcC/*dx*dy*dz

Приращение количества распределяемого вещества за счет моле­кулярной диффузии определяется равенством (11.44). Приравнивая правые части равенств (11.44) и (11.50), получим уравнение конвек­тивной диффузии:

C/+C/x*wx+C/y*wy+C/z*wz=D( 2C/x 2+ 2C/y 2+ +2C/xz2)

8.Молекулярная диффузия. Первый закон Фика. Коэффициент диффузии и его физический смысл.

Закон молекулярном диффузии (первый закон Фика)

Молекулярная диффузия в газах и растворах жидкостей проис­ходит в результате хаотического движения молекул, не связанного с движением потоков жидкости. В этом случае, т. е. когда концентра­ции перемещающихся в пространстве молекул малы, препятствий к взаимосвязанному их перемещению нет. В результате имеет место перенос молекул распределяемого вещества из областей высоких концентраций в область низких концентраций. Кинетика переноса подчиняется в этом случае первому закону Фика, формулировка которого аналогична закону теплопроводности: количество продиффундировавшего вещества пропорционально градиенту концентраций, площади, перпендикулярной направлению диффузионного потока, и времени:

dM=-D* (dM-кол-во продифунд.ве-ва;D-коэф.диффузии,

D-показывает какое кол-во ве-ва дифундирует через пов-ть в 1м2 в течении 1сек. При разности концентраций на расстоянии 1м=1

Размерность D зависит от 1,от агрегатного состояния сис-мы,2. С увелеичением температ.коэф. диффузии увеличивается.3 с увелич.давления коэф.дифуз.уменьшается.

Коэффициент диффузии не является постоянной величиной;численные значения его обычно берут из справочника.

Коэффициент диффузии зависит прежде всего от агрегатного состояния систем: так,коэффициент диффузии для газов примерно на четыре порядка выше,чем для жидкостей.Коэффициент диффузии увеличивается с ростом температуры и уменьшается с повышением давления.

9.Уравнение Щукарева. Коэффициент масоотдачи и его физический смысл, сопоставление с коэф. массопередачи.

Закон Щукарева: кол-во в-ва перенесенного от поверхности раздела фаз в воспринимающую фазу пропорционально разности концентраций у пов-ти раздела фаз и в ядре потока воспринимающей фазы , пов-ти фазового контакта и времени.

dM=β(Cr-Cf)dF*dτ

β[m\c]-коэф массоотдачи, хар-т перенос в-ва конвективными и диф-ми потоками одновременно, показывает какое кол-во в-ва передается от пов-ти раздела фаз в воспринимаемую фазу через 1м2 фазового контакта в течении 1с при разности концентраций 1кг\м3.

Сr-конц-я в воспринимаемой фазе у поверхности раздела фаз

Сf-конц-я в ядре потока воспринимающей фазы

Концентрация на границе Сr рассматривается как равновесная концентрация.

Для установившегося процесса коэф массоотдачи и концентрации сохраняют постоянное значение в рассматриваемом объеме.

Сопоставление с коэф. массопередачи

Ку=1/(1/βy+Ap/βx)

Характеристики

Тип файла
Документ
Размер
9,8 Mb
Материал
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее