Биологический метод очистки сточных вод (аэротенк) от органических соединений (1094008), страница 5
Текст из файла (страница 5)
Глюкоза + АТФ гексокиназа глюкозо - 6 - фосфат + АДФ
После завершения стадии гликолиза и образования ПВК ход дальнейшего превращения ПВК зависит от типа брожения и его возбудителя. Основные типы брожения: спиртовое, молочнокислое, пропионовокислое, маслянокислое, метановое.
Окислительное фосфорилирование может осуществляться и под воздействием фермента, синтезирующего АТФ на уровне субстрата. Однако, такое образование макроэргических связей носит весьма ограниченный характер, и в присутствии кислорода клетки синтезируют большую часть содержащейся в них АТФ через систему переноса электронов.
Аккумуляция высвобождающейся в процессе диссимиляции вещества в аэробных или анаэробных условиях с помощью макроэргических соединений (и прежде всего АТФ) позволяет устранить несоответствие между равномерностью процессов высвобождения химической энергии из субстрата и неравномерностью процессов ее расходования, неизбежной в реальных условиях существования клетки.
Упрощенно весь процесс распада органических веществ в ходе аэробных превращений может быть представлен схемой, приведенной на рис.3. Схема же анаэробных превращений ПВК после стадии гликолиза представлена на рис.4.
Рис.3. Упрощенная схема трехстадийного распада молекул питательных веществ (Б.Альбертс и др. 1986)
Исследованиями установлено, что зачастую тип метаболизма зависит не столько от наличия кислорода в среде, сколько от концентрации субстрата. В условиях избытка глюкозы этанол вырабатывался дрожжами Candida utilis при любых концентрациях кислорода. Удельная скорость потребления глюкозы rs и удельная скорость образования этанола гр зависели как от концентрации кислорода, так и от концентрации глюкозы.
Это указывает на то, что в зависимости от конкретных условий функционирования биомассы в среде могут одновременно протекать как аэробные, так и анаэробные процессы трансформации органических соединений, интенсивность которых также будет зависеть от концентрации и субстрата и кислорода.
Здесь следует отметить, что в промышленной биотехнологии для получения различных продуктов микробиального происхождения (кормовых или пекарских дрожжей, различных органических кислот, спиртов, витаминов, лекарственных препаратов) используются чистые культуры, т.е. микроорганизмы одного вида зачастую селекционируемые, со строгим поддержанием видового состава, соответствующих условий питания, температуры, активной реакции среды и пр., исключающих появление и развитие других видов микроорганизмов, что могло бы привести к отклонению качества получаемого продукта от установленных стандартов.
Рис. 4. Превращение пировиноградной кислоты анаэробными микроорганизмами в различные продукты
При очистке же сточных вод, содержащих смесь разнообразных по химическому составу загрязнений, которые иногда даже весьма трудно идентифицировать аналитическими методами, биомасса, осуществляющая очистку, также представляет собой смесь, а точнее, сообщество различных видов микроорганизмов и простейших со сложными между ними отношениями. Как видовой, так и количественный состав биомассы очистных сооружений будет зависеть от конкретного метода биологической очистки и условий его реализации.
По расчетам некоторых специалистов, при концентрации растворенных органических загрязнений, оцениваемых показателем БПКполн до 1000 мг/л наиболее выгодно применение аэробных методов очистки. При концентрациях БПКполн, от 1000 до 5000 мг/л экономические показатели аэробных и анаэробных методов будут практически одинаковыми. При концентрациях же свыше 5000 мг/л более целесообразным будет применение анаэробных методов. Однако, при этом следует принимать во внимание не только концентрацию загрязнений, но и расходы сточных вод, а также тот факт, что анаэробные методы приводят к образованию таких конечных продуктов, как метан, аммиак, сероводород и др. и не позволяют получить качество очищенной воды, сопоставимое с качеством очистки аэробными методами. Поэтому при высоких концентрациях загрязнений применяется сочетание анаэробных методов на первой ступени (или первых ступенях) очистки и аэробных методов на последней ступени очистки. Следует подчеркнуть, что бытовые и городские сточные воды, в отличие от производственных, не содержат концентраций загрязнений, оправдывающих применение анаэробных методов, и потому эти методы очистки в данной главе не рассматриваются.
§ 6. СООРУЖЕНИЯ И АППАРАТЫ БИОЛОГИЧЕСКОЙ ОЧИСТКИ
Биологическая очистка может осуществляться как в естественных, так и в искусственных условиях.
К сооружениям естественной очистки относятся:
-
Фильтрующие колодцы, используемые при расходе 1 куб. м в сутки и менее, и фильтрующие кассеты - при расходе 0,5-6 куб. м в сутки.
-
Поля подземной фильтрации - при расходе до 15 куб. м в сутки и более.
-
Поля фильтрации - при расходе 1400 куб. м в сутки и менее.
В этих сооружениях, фильтрующей загрузкой являются естественные грунты, используемые непосредственно на месте (пески, супеси, легкие суглинки).
-
Фильтрующие траншеи, песчано-гравийные фильтры, применяемые при расходе 15 куб. м в сутки и более. Оросительная и дренажная сеть этих сооружений положена в слое искусственной фильтрующей загрузки из привозного грунта. Их устраивают при наличии водонепроницаемых или слабофильтрующих грунтов.
-
Фильтрующие кассеты с пропускной способностью 0,5-6 куб.м в сутки, применяемые в слабофильтрующих грунтах (суглинках) при коэффициенте фильтрации не менее 0,1 куб.м в сутки.
-
Циркуляционные окислительные каналы (ЦОК) - при расходе 100-1400 куб.м в сутки.
-
Биологические пруды с естественной или искусственной аэрацией - при расходе 1400 куб.м в сутки.
При круглогодичной работе очистной станции Сооружения естественной очистки рекомендуется использовать, если удовлетворяются следующие условия:
-
среднегодовая температура воздуха в районе расположения очистной станции не менее 10 град.С;
-
глубина грунтовых вод не менее 1 м от поверхности земли;
-
наличие свободных площадей в близи малых объектов.
При сезонной работе станции (только в летний период) первое условие, касающееся среднегодовой температуры, исключается.
Однако почвенные методы не всегда приемлемы из-за неблагоприятных санитарных, почвенно-грунтовых, климатических, гидрогеологических условий. В связи с этим возникает необходимость в применении сооружений искусственной биологической очистки.
К сооружениям, в которых биологическая очистка протекает в искусственно созданных условиях, относятся:
-
Биофильтры с загрузкой из пеностекла или пластмассы.
-
Биодисковые фильтры.
-
Биофильтраторы.
-
Биореакторы с биобарабанами.
-
Блок биореакторов с затопленной ершовой загрузкой.
-
Аэрационные установки, работающие по методу полного окисления (продленной аэрации).
Аэрационные установки с аэробной стабилизацией избыточного активного ила.
6.1. БИОФИЛЬТРЫ С ЗАГРУЗКОЙ ИЗ ПЕНОСТЕКЛА
ИЛИ ПЛАСТМАССЫ
Сооружения биологической фильтрации, особенно с прикрепленным биоценозом, хорошо себя зарекомендовали в работе с малыми расходами и пиковыми нагрузками по органике. Они просты, удобны, в них за короткое время (до 30 минут) происходит скоростное изъятие загрязнений. На традиционных биофильтрах в качестве фильтрующей массы применяют объемный материал: щебень, гравий, керамзит. Блочные загрузки из блоков пеностекла имеют преимущества в технологическом, конструктивном и эксплуатационном отношениях по сравнению с другими материалами. Пеностекло - это теплоизоляционный строительный материал. Он отличается механической прочностью, влаго-, паро- и газонепроницаемостью, огнестойкостью, морозостойкостью, долговечностью, устойчивостью к воздействию кислот и продуктов разложения. Площадь адсорбционной поверхности пеностекла в зависимости от величины перфорации с учетом малых и больших пор- 200 кв.м/куб.м.
Пеностекло имеет чрезмерно развитую поверхность, удерживает в единице объема большое количество биопленки, чем какой-либо другой вид загрузочного материала, что способствует интенсивному изъятию загрязнений из сточных вод.
Распределение сточной воды по поверхности биофильтра осуществляется с помощью реактивного оросителя (Рис.5).
Пластмассовые загрузки используются в виде жесткой (кольца, обрезки труб и т.д.), жестко-блочной (из плоских и гофрированных листов), а также мягкой (из пластмассовых пленок) засыпки. Таким образом, загрузка обладает высокой пустотностью, большой сорбционной поверхностью и относительно малым коэффициентом сцепления биопленки с поверхностью загрузки, что создает условия для образования тонкого слоя биопленки.
Пластмассовая загрузка исключает заиливание биофильтров, значительно увеличивает объем поступающего воздуха, что способствует повышению окислительной мощности. Кроме достоинств, биофильтры обладают и рядом недостатков. Так, высокая не равномерность поступления сточных вод от малых объектов крайне отрицательно влияет на работу биофильтров и аэротенков. В биофильтрах происходит подсыхание биопленки и наблюдается не равномерность температурного режима ее работы, создаются условия, способствующие заиливанию загрузки. Во избежание этих явлений в часы минимального притока сточных вод осуществляют рециркуляцию очищенных сточных вод, что приводит к дополнительным энергозатратам на перекачку стоков.
6.2. БИОДИСКОВЫЕ ФИЛЬТРЫ
Эти сооружения предназначены для расхода сточных вод до 1000 куб.м в сутки. В качестве загрузки для биодисковых фильтров рекомендуются перфорированные диски, изготовленные из объемных синтетических материалов пониженной плотности (пенопласта, пеностекла).
Современные биодисковые фильтры представляют собой многосекционную емкость, наполненную вращающейся загрузкой (Рис. 6). Диски набирают на горизонтально расположенном валу с расстоянием между ними 15-20 мм. Диски обычно погружены в очищаемую жидкость на 0,45Д (30—45 %), иногда до 0,75Д. Диаметр дисков находится в пределах от 0,4 до 3,0 метров в зависимости от производительности установки.
Принцип действия данного сооружения следующий: диски - основной компонент сооружения - находится в постоянном вращательном движении, причем их поверхность перфорации покрывается биопленкой, которая находится в прикрепленном состоянии. Биомодули, создавая обширную поверхность, обеспечивают гидродинамические условия, при которых отторгнутая биопленка продолжает работать, находясь во взвешенном состоянии. Здесь совмещается режим работы прикрепленного биоценоза и взвешенного (активного) ила. За пределами зоны очищаемой воды микроорганизмы, находясь в биопленке, получают кислород непосредственно из атмосферы.
При одинаковых категориях обрабатываемых городских сточных вод и заданном эффекте очистки время аэрации в БДФ составляет 60-90 минут, а в классических аэротенках - около 6 часов.
Биодисковые фильтры компактны, конструктивно просты, устойчивы к различного рода перегрузкам, имеют низкие удельные энергозатраты. Кроме того, при использовании этих фильтров практически отпадает необходимость насосной станции, так как гидравлические потери сооружений не значительны.
Биодисковые фильтры - многосекционные сооружения (3-6 секций). Основная масса удаленных биоразлагаемых загрязнений приходится на первую и вторую секции БДФ. Процесс снижения аммонийного азота и нитрификации успешно протекает в третьей и последующих секциях. Удаление азота достигает 40 %, что выше, чем в классических биофильтрах и аэротенках. Однако в очищенных водах присутствуют азотистые соли (биогенные соединения), поэтому в некоторых случаях требуется доочистка.
Из биодисковых фильтров биологическая пленка потока обработанной жидкости выносится во вторичный отстойник. Разделение биопленки осуществляется гравитационным способом. Вторичные отстойники рекомендуется оборудовать тонкослойными модулями.
6.3. БИОФИЛЬТРАТОРЫ
Компактная установка биофильтратор предназначена для малых расходов сточных вод (от 2 до 600 куб.м в сутки) и обеспечивает полную биологическую очистку от разнообразных загрязнений в широком диапазоне концентраций. Установка имеет низкие капитальные вложения и энергетические затраты. Она проста и экономична в эксплуатации, не требует специального постоянного ухода.Биофильтратор (Рис.7) состоит из аэрационной (сорбционной) зоны и зоны осветления.