Биологический метод очистки сточных вод (аэротенк) от органических соединений (1094008), страница 3
Текст из файла (страница 3)
Требования к условиям отведения сточных вод в поверхностные водоемы распространяются на существующие выпуски производственных, хозяйственно-бытовых сточных вод и поверхностного стока с территорий населенных мест и производственых объектов, сточные воды отдельно стоящих жилых домов и производственных зданий и т.п., на все проектируемые выпуски сточных вод.
Учитывая, что большинство водоемов в Российской Федерации в настоящее время отнесено к рыбохозяйственным, при разработке технологий и сооружений очистки сточных вод приходится ориентироваться на требования, предъявляемые к этой категории водоемов.
Следует отметить, что в России по сравнению с другими странами к качеству очищенных сточных вод предъявляются наиболее высокие, часто чрезмерные требования. Для сравнения можно привести требования для воды рыбохозяйственных водоемов в РФ и нормы на сброс городских сточных вод в некоторых странах по БПК (таблица 1).
Таблица 1
Показатель | РФ | США | ФРГ | Великобритания | Франция | Швейцария | Бельгия |
БПК5, мг/л | 3(БПКполн.) | 20 | 25 | 20 | 20-40 | 20 | 15-50 |
Так, например, по данным МосводоканалНИИпроекта водный сток на участке р.Москвы, отнесенной к рыбохозяйственным водоемам, от п.Коломенское до п.Отдых на 55% состоит из очищенных сточных вод г.Москвы. В исходной речной воде в п. Коломенское ХПК равна 53,9 мг/л, нормируемая ХПК в речной воде - 30 мг/л, т.е. для достижения нормируемого показателя сточную воду с учетом разбавления необходимо очистить по ХПК до 10 мг/л, что совершенно нереально.
При сбросе воды в черте населенного пункта требования, установленные к составу и свойствам воды водоема, относятся и к самим сточным водам. При поступлении в водоем нескольких веществ с одинаковыми лимитирующими показателями вредности, сумма отношений концентраций (C1 ,C2, …, Сn) каждого из веществ в этом водоеме к соответствующим ПДК не должна превышать 1:
В этих условиях зачастую очищенная сточная вода должна быть чище питьевой, предусмотренной соответствующими ГОСТами на питьевую воду, а качество воды во многих, даже экологически благополучных водоемах не соответствует требованиям правил по охране водных ресурсов.
Сопоставление требований по удалению из сточных вод органических загрязнений, взвешенных веществ и химических загрязнений для реальных условий выявит перечень ингредиентов, удаление которых является определяющим. Удаление прочих загрязнений произойдет как сопутствующий эффект.
Достижения науки и техники в настоящее время дают возможность разработать технологии очистки, позволяющие получить воду высокого качества, применяя механические. физико-химические и, в качестве основных, биологические методы.
Однако, с экономической точки зрения это зачастую неоправдано. Известно, что легче предотвратить загрязнение, чем восстановить исходное качество воды.
По данным Госкомстата РФ в 1994 г. общее количество отводимых сточных вод в России составило 20123 млн.мЗ/год, в том числе от городов - 19208,5 млн.мЗ/год, от сельских населенных пунктов - 914,5 млн.мЗ/год. Через очистные сооружения проходит 79,5% общего количества сточных вод, биологической очистке подвергаются менее 75%(в сельских населенных местах эта цифра составляет только 61,7%). Безо всякой очистки в водоемы сбрасывается 20,5% сточных вод.
Требования к качеству очищенных сточных вод должны базироваться на соответствии экологической необходимости, экономической целесообразности и технологических возможностей.
Завышенные требования к качеству очищенных вод часто приводят к противоположным результатам в области охраны водоемов от загрязнения. Экономически осуществимые в настоящее время проекты по очистке сточных вод, предусматривающие снижение концентрации основных загрязнений на 90-95° о, не согласовываются органами санэпиднадзора и охраны природы, в результате чего задерживается строительство очистных сооружений и в водемы продолжают сбрасываться неочищенные сточные воды. В других случаях затрачиваются финансовые и материальные ресурсы для осуществления глубокой очистки сточных вод, в то время как мощность очистных сооружений не обеспечивает полную биологическую очистку всех сточных вод населенного пункта.
По современным требованиям к качеству очищенных сточных вод практически все отводимые сточные воды должны подвергаться глубокой очистке. Простые расчеты показывают, что для получения одинакового экологического эффекта от водоохранных мероприятий, т.е. изъятия из сточных вод заданного количества загрязняющих веществ, при биологической очистке неочищенных сточных вод (20,5%) необходимо затратить в 10 раз меньше финансовых и материальных ресурсов, чем при глубокой очисткe сточных вод, прошедших очистные сооружения (79.5%).
Для осуществления полной биологической очистки сточных вод при удалении основных загрязнителей на 95% необходимы практически такие же затраты, как для глубокой очистки с удалением еще 10-12% загрязнений, то есть эффективность инвестиций в строительство сооружений глубокой очистки на порядок ниже, чем в строительство сооружений полной биологической очистки. В связи с тем, что более 20% сточных вод сбрасываются в водоемы в настоящее время без очистки, для обеспечения необходимого санитарно-гигиенического эффекта оздоровления водоемов следует обеспечить прежде всего полную биологическую очистку всех сточных вод. Только после этого можно будет определить реальные нормативы сброса сточных вод в водоемы.
§ 4. БИОЛОГИЧЕСКАЯ ОЧИСТКА СТОЧНЫХ ВОД
Биологическая очистка сточных вод представляет собой результат функционирования системы активный ил - сточная вода, характеризуемой наличием сложной многоуровневой структуры. Биологическое окисление составляющее основу этого процесса, является следствием протекания большого комплекса взаимосвязанных процессов различной сложности: от элементных актов обмена электронов до сложных взаимодействий биоценоза с внешней средой.
Результаты исследований показывают, что характерной особенностью сложных многовидовых популяций, к которым относятся и активный ил, является установление в системе динамического равновесия, которое достигается сложением множества относительно небольших отклонений активности и численности отдельных видов в ту или иную сторону от их среднего уровня.
§ 5. БИОХИМИЧЕСКИЕ ОСНОВЫ МЕТОДОВ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД
Биологические методы очистки сточных вод основываются на естественных процессах жизнедеятельности гетеротрофных микроорганизмов. Микроорганизмы, как известно, обладают целым рядом особых свойств, из которых следует выделить три основных, широко используемых для целей очистки:
1. Способность потреблять в качестве источников питания самые разнообразные органические (и некоторые неорганические) соединения для получения энергии и обеспечения своего функционирования.
2. Во-вторых, это свойство быстро размножаться. В среднем число бактериальных клеток удваивается через каждые 30 мин. По утверждению проф. Н.П. Блинова, если бы микроорганизмы могли беспрепятственно размножаться, то при наличии достаточного питания и соответствующих условий за 5 - 7 дней масса только одного вида микроорганизмов заполнила бы бассейны всех морей и океанов. Этого, однако, не происходит как из-за ограниченности источников питания, так и благодаря сложившемуся природному экологическому равновесию.
3. Способность образовывать колонии и скопления, которые сравнительно легко можно отделить от очищенной воды после завершения процессов изъятия содержавшихся в ней загрязнений.
В живой микробиальной клетке непрерывно и одновременно протекают два процесса - распад молекул (катаболизм) и их синтез (анаболизм), составляющие в целом процесс обмена веществ - метаболизм. Иными словами, процессы деструкции потребляемых микроорганизмами органических соединений неразрывно связаны с процессами биосинтеза новых микробиальных клеток, различных промежуточных или конечных продуктов, на проведение которых расходуется энергия, получаемая микробиальной клеткой в результате потребления питательных веществ. Источником питания для гетеротрофных микроорганизмов являются углеводы, жиры, белки, спирты и т.д., которые могут расщепляться ими либо в аэробных, либо в анаэробных условиях. Значительная часть продуктов микробной трансформации может выделяться клеткой в окружающую среду или накапливаться в ней. Некоторые промежуточные продукты служат питательным резервом, который клетка использует после истощения основного питания. Весь цикл взаимоотношений клетки с окружающей средой в процессе изъятия из нее и трансформации питательных веществ определяется и регулируется соответствующими ферментами. Ферменты локализуются в цитоплазме и в различных субструктурах, встроенных в мембрану клетки, выделяются на поверхность клетки или в окружающую среду. Общее содержание ферментов в клетке достигает 40 - 60% от общего содержания в ней белка, а содержание каждого из ферментов может составлять от 0,1 до 5% от содержания белка. При этом в клетках может находиться свыше 1000 видов ферментов, а каждую биохимическую реакцию, осуществляемую клеткой, могут катализировать 50 ~ 100 молекул соответствующего фермента. Часть ферментов представляют собой сложные белки (протеиды), содержащие кроме белковой части (апофермента) небелковую часть (кофермент). Во многих случаях коферментами являются витамины, иногда -комплексы, содержащие ионы металлов.
Ферменты делятся на шесть классов по характеру реакций, катализирующих: окислительные и восстановительные процессы; перенос различных химических групп от одного субстрата к другому; гидролитическое расщепление химических связей субстратов; отщепление от субстрата химической группы или присоединение таковой; изменение в пределах субстрата; соединение молекул субстрата с использованием высокоэнергетических соединений.
Поскольку микробиальная клетка потребляет только растворенные в воде органические вещества, то проникновение в клетку нерастворимых в воде веществ, таких, например, как крахмал, белки, целлюлоза и др. возможно лишь после их соответствующей подготовки, для чего клетка выпускает в окружающую жидкость необходимые ферменты для гидролитического их расщепления на более простые субъединицы.
Коферменты определяют природу катализируемой реакции и по выполняемым функциям подразделяются на три группы:
1. Переносящие ионы водорода или электроны. Связаны с окислительно-восстановительными ферментами - оксидоредуктазами.
2. Участвующие в переносе групп атомов (АТФ - аденозинтрифосфорная кислота, фосфаты углеводов, СоА - коферменат А и др.)
3. Катализирующие реакции синтеза, распада и изомеризации углеродных связей.
Механизм изъятия из раствора и последующей диссимиляции субстрата носит весьма сложный и многоступенчатый характер взаимосвязанных и последовательных биохимических реакций, определяемых типом питания и дыхания бактерий. Достаточно сказать, что многие аспекты этого механизма не совсем ясны до сих пор, несмотря на его практическое использование, как в области биотехнологии, так и в области биохимической очистки воды от органических примесей в широком спектре схем его технологического оформления.
Наиболее ранняя модель процесса биохимического изъятия и окисления загрязнений основывалась на трех главных положениях: сорбционное изъятие и накопление изымаемого вещества на поверхности клетки; диффузионное перемещение через клеточную оболочку либо самого вещества, либо продуктов его гидролиза, либо гидрофобного комплекса образуемого гидрофильным проникающим веществом и белком-посредником; метаболическая трансформация поступивших внутрь клетки питательных веществ, обеспечивающая диффузионное проникновение вещества в клетку.
В соответствии с этой моделью считалось, что процесс изъятия питательных веществ из воды начинается с их сорбции и накопления на поверхности клетки, для чего требуется постоянное перемешивание биомассы с субстратом, обеспечивающее благоприятные условия для "столкновения" ) клеток с молекулами субстрата.
Механизм переноса вещества от поверхности клетки внутрь нее - эта модель объясняла либо присоединением проникающего вещества к специфическому белку-переносчику, являющемуся компонентом мембраны клетки, который после введения вещества внутрь клетки высвобождается и возвращается на ее поверхность для совершения нового "захвата" вещества и нового цикла переноса, либо непосредственным растворением этого вещества в веществе стенки и цитоплазматической мембраны, благодаря чему оно и диффундирует внутрь клетки. Процесс стабильного потребления вещества начинался лишь после некоторого "периода равновесия" вещества между раствором и клетками, объяснявшегося протеканием гидролиза и диффузионным перемещением вещества через клеточную оболочку до цитоплазматической мембраны, где сосредоточены различные ферменты. С началом метаболических превращений сорбционное равновесие нарушается, и концентрационный градиент обеспечивает непрерывность дальнейшего поступления субстрата в клетку.
На третьем же этапе происходят все метаболические превращения субстрата частично в такие конечные продукты, как диоксид углерода, вода, сульфаты, нитраты (процесс окисления органических веществ), частично в новые микробиальные клетки (процесс синтеза биомассы), если процесс трансформации органических соединений происходит в аэробных условиях. Если же биохимическое окисление протекает в анаэробных условиях, то в его процессе могут образовываться различные промежуточные продукты (возможно целевого назначения), СН4, NH3, H3S и пр. и новые клетки.
Эта модель, однако, не смогла объяснить некоторые кинетические особенности транспортных процессов переноса субстрата и, в частности, накопления субстрата в клетке против концентрационного градиента, являющегося наиболее частым результатом этих процессов и получившего название "активного" транспорта, в отличие от диффузионного переноса. Особенностью активных транспортных процессов является их стереоспе-цифичность, когда близкие по химической структуре вещества конкурируют за общий переносчик, а не просто диффундируют в клетку под воздействием концентрационного градиента.
В свете современных взглядов модель перемещения субстрата через клеточную мембрану предполагает наличие в ней гидрофильного "канала", через который внутрь клетки могут проникать гидрофильные субстраты. Однако в отличие от вышеописанной модели здесь осуществляется стереоспецифическое перемещение, достигаемое, вероятно, за счет "эстафетной" передачи молекул субстрата от одной функциональной группы к другой. Субстрат при этом, как ключ, открывает соответствующий для его проникновения канал (модель трансмембранного канала).