5 - Классификация погрешностей измерений (1093442)
Текст из файла
МОДУЛЬ E. КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ
Погрешность результата измерения (погрешность измерения) – отклонение результата измерения от истинного (действительного) значения измеряемой величины.
Формально погрешность можно представить выражением
= X – Q, (1)
где – абсолютная погрешность измерения;
X – результат измерения физической величины;
Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).
В РМГ 29 – 99 отмечается, что истинное значение величины всегда остается неизвестным (его применяют только в теоретических исследованиях) и на практике вместо него используют действительное значение величины хд в результате чего погрешность измерения Δxизм определяют по формуле
где xизм — измеренное значение величины.
Синонимом термина «погрешность измерения» является термин ошибка измерения, применять который не рекомендуется, поскольку погрешность является неустранимым атрибутом результата измерения, в то время как ошибка связана с нарушением процедуры измерений и должна быть устранена.
Классификация погрешностей измерений может осуществляться по разным классификационным признакам (основаниям), например:
-
по источникам возникновения (например, инструментальные погрешности, субъективные погрешности),
-
по степени интегративности (интегральная погрешность и составляющие погрешности, например инструментальную погрешность можно рассматривать как составляющую интегральной погрешности измерения);
-
по характеру проявления или изменения от измерения к измерению (случайные, систематические и грубые),
-
по значимости (значимые, пренебрежимо малые),
-
по причинам, связанным с режимом измерения (статические и динамические),
-
по уровню имеющейся информации (определенные и неопределенные),
-
по формам выражения (абсолютные и относительные погрешности),
-
по формам используемых оценок (среднее квадратическое значение, доверительные границы погрешности и др.).
Рассмотрим более подробно некоторые из классификаций.
Поскольку деление погрешностей по источникам их возникновения не является самоцелью, а используется для выявления составляющих, наиболее часто используется и представляется достаточно логичной следующая классификация:
-
погрешности средств измерений (они же "аппаратурные погрешности" или "инструментальные погрешности");
-
методические погрешности или "погрешности метода измерения";
-
погрешности из-за отличия условий измерения от нормальных ("погрешности условий");
-
субъективные погрешности измерения ("погрешности оператора", или же "личные" либо "личностные погрешности").
Жирным курсивом выделены термины, взятые из РМГ 29 – 99. К сожалению, этот документ включает ряд не вполне корректных терминов и определений, относящихся к источникам погрешностей измерений.
Инструментальная погрешность измерения (инструментальная погрешность) – составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.
Фактически к инструментальным погрешностям относят погрешности всех применяемых в данных измерениях технических средств и вспомогательных устройств, влияющих на результат измерений, включая погрешности прибора, мер для его настройки, дополнительных сопротивлений, шунтов, установочных узлов или соединительных проводов и т.д. Например, при измерении массы на весах методом сравнения с мерой к погрешности весов добавляются погрешности гирь. Для измерения длины достаточно часто используют высокоточные узкодиапазонные приборы, которые настраивают по концевым мерам длины.
Так при измерении диаметра d детали индикатором часового типа на стойке (рис. 1), инструментальные погрешности складываются из погрешностей самой измерительной головки 1, погрешностей стойки 2 и погрешностей блока плоскопараллельных концевых мер длины 3, на который настраивался прибор. В свою очередь каждую из приведенных инструментальных составляющих погрешности измерения можно разбить на элементарные составляющие. Например, погрешность измерительной головки 1 включает в себя множество составляющих, которые зависят от ее конструкции; погрешности составляющих элементов стойки 2 приводят к неправильному ориентированию прибора и детали; погрешности блока плоскопараллельных концевых мер длины 3, на который настраивался прибор, определяются погрешностями каждой из мер блока и погрешностями их притирки.
Погрешность метода измерений (погрешность метода) – составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений. В примечаниях говорится, что иногда погрешность метода может проявляться как случайная. Если погрешность от некоторого источника может проявляться как систематическая и как случайная, не имеет смысла связывать характер погрешности с ее источником. Далее там же сказано, что погрешность метода иногда называют теоретической погрешностью – по-видимому из этого обстоятельства последовал вывод о систематическом характере этой погрешности. Фраза первого примечания «Вследствие упрощений, принятых в уравнениях для измерений, нередко возникают существенные погрешности, для компенсации действия которых следует вводить поправки» стилистически некорректна, а содержательно базируется на предположении о систематическом характере погрешности.
Чтобы не связывать напрямую «методы измерений» и «погрешность метода», поскольку такой связи не существует, предпочтительно рассматриваемый класс погрешностей называть «методическими погрешностями». Методические погрешности могут возникать из-за несоответствий реальной методики выполнения измерений идеальным теоретическим положениям, на которых основаны измерения. Эти погрешности в свою очередь делятся на две группы. К первой можно отнести погрешности из-за допущений, принятых при измерении или обработке результатов, а также используемых в ходе измерительного преобразования приближений и упрощений (погрешности из-за несоответствия процесса измерительного преобразования его идеальной модели). Другой возможной причиной погрешностей метода является некорректная идеализация реального объекта измерений (погрешности из-за несоответствия объекта измерения идеализированной модели, положенной в основу процесса измерения).
Рассмотрим примеры погрешностей первой группы. При косвенных измерениях диаметров больших деталей часто рулеткой измеряют длину окружности, а затем рассчитывают диаметр. Здесь теоретическая погрешность будет присутствовать в любом случае из-за округления трансцендентного числа . По этой же причине образуются методические погрешности при измерении площади круглых сечений, объема тел с такими сечениями и плотности их материала.
При измерении азимута по магнитному компасу методическая погрешность возникает из-за несовпадения магнитных и географических полюсов Земли.
Измерение параметров электрической цепи специально подключаемым прибором приводит к некоторому изменению структуры цепи из-за подключения дополнительной нагрузки. Результаты измерений электрических параметров объектов могут искажаться также из-за наличия присоединительных проводов, меняющихся переходных сопротивлений в местах присоединения чувствительных элементов (щупов или клемм) измерительных приборов.
Измерение массы взвешиванием на рычажных весах с гирями в воздушной среде, как правило, осуществляют без учета воздействия на меры и объект выталкивающей архимедовой силы, которой бы не было при взвешивании в вакууме.
Измерение температуры воды в стакане жидкостным термометром, погружаемым в налитую горячую воду, фактически приводит к измерению температуры "объединения вода + термометр", которая отличается от исходной из-за потерь энергии на выравнивание температур тел "композиции".
Измерение линейных размеров всегда базируется на теоретическом допущении идеально гладких границ твердого тела, что противоречит наличию микрогеометрии и субмикрогеометрии поверхности контролируемой детали.
В большинстве случаев погрешности из-за принятых допущений пренебрежимо малы, но в случае прецизионных измерений их приходится оценивать и учитывать или компенсировать.
Появление методической погрешности второй группы (погрешности из-за некорректной идеализации реального объекта измерений) можно рассмотреть на примере измерения диаметра номинально цилиндрической детали станковым средством измерений (измерительной головкой на стойке). В частности, измерение детали с седлообразной поверхностью приведет к появлению методической погрешности, примерно равной отклонению образующей от прямолинейности (рис. 2). Приведенный пример показывает, что некорректная идеализация формы объекта при линейных измерениях может привести к возникновению методических погрешностей, которые могут существенно превышать инструментальную составляющую.
При измерении плотности номинально компактного и однородного твердого тела неидеальность объекта может быть связана с наличием необнаруженных полостей или инородных включений.
Перечень видов неидеальности объектов может быть значительно расширен. Например, значения параметров твердости и шероховатости поверхностей деталей, химический состав материала детали, определяемые на конкретном участке, могут отличаться от параметров на других участках той же поверхности. Температура в объеме жидкости или газа практически всегда различается по слоям (температурные градиенты), скорость жидкости или газа в потоке в разных сечениях неодинакова (градиенты скорости) и т.д.
Погрешность (измерения) из-за изменений условий измерения – составляющая систематической погрешности измерения, являющаяся следствием неучтенного влияния отклонения в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.
Примечание — Этот термин применяют в случае неучтенного или недостаточно учтенного действия той или иной влияющей величины (температуры, атмосферного давления, влажности воздуха, напряженности магнитного поля, вибрации и др.); и др.
Как и в предыдущем случае, определение содержит неправомочное указание на систематический характер погрешности. Кроме того, погрешности связывают с неучтенным отклонением влияющей величины в одну сторону (а как быть с ее колебанием при многократных измерениях?). «Неучтенное или недостаточно учтенное действие (влияние)» не имеет никакого смысла в определении источника погрешности – это проблема обнаружения и оценки погрешности. Под неправильной установкой средств измерений, нарушением правил их взаимного расположения, скорее всего, понимают возможность нежелательного воздействия на средства измерений силы тяжести, взаимное воздействие на приборы их собственных полей (точнее, присущих этим полям влияющих величин).
Наиболее логичным представляется термин «погрешности из-за отличия условий измерения от идеальных (от нормальных)». Обычно такие погрешности называют "погрешностями условий", что не совсем корректно, но подразумевает то же содержание. Фактически эти погрешности имеют место тогда, когда не удается выдержать нормальные условия измерений.
Нормальные условия связаны с понятием влияющих физических величин, то есть тех, которые не являются измеряемыми, но оказывают влияние на результаты измерений, воздействуя на объект и/или средства измерений. Пределы допустимых изменений таких величин или их отклонений от номинальных значений нормируют либо нормальной областью значений (для обеспечения нормальных условий измерения) или рабочей областью значений (для обеспечения рабочих условий измерений). При нормальных условиях измерений возникают погрешности, вызванные отличием влияющих величин от номинальных (идеальных) значений. Однако нормальные условия назначают таким образом, чтобы "погрешности условий" оказались пренебрежимо малыми, например, по сравнению с инструментальными составляющими. В таком случае "погрешности условий" можно считать практически равными нулю.
К погрешностям из-за несоблюдения нормальных условий измерений следует отнести все составляющие погрешности измерения, которые вызваны воздействием на измеряемый объект и средства измерений любой влияющей физической величины, выходящей за пределы нормальной области значений. Влияющие физические величины обычно обусловлены температурными, электромагнитными и другими полями в рабочей зоне (измерительная позиция и ближайшее окружение), давлением воздуха, его избыточной влажностью, наличием вибраций на рабочем месте, где выполняются измерения.
Есть множество других факторов, которые могут привести к искажению самой измеряемой величины и (или) измерительной информации о ней. Например, изменение температуры не приводит к изменению массы, но вызывает изменения линейных размеров, изменения сопротивления прохождению электрического тока. Повышенная влажность не влияет на размеры металлических деталей, но может привести к изменению размеров и массы изделий из гидрофильных материалов, которые впитывают влагу из окружающей атмосферы (вот почему в упаковки товаров иногда вкладывают пакетики с силикагелем).
Поиск влияющих величин осуществляется при анализе конкретной методики выполнения измерений. В процессе проведения анализа следует внимательно относиться к "дополнительным погрешностям средств измерений", возникающим из-за действия влияющих величин, поскольку учет только этих составляющих может привести к "потере" результатов воздействия тех же влияющих величин на объект измерения.
"Погрешности условий" могут возникать либо из-за закономерно изменяющегося отличия влияющей величины от ее номинального значения, либо из-за стохастических колебаний около него. Например, если рассматривать температурные погрешности, то они могут возникать из-за стабильного отличия температуры от нормальной (при измерениях длины температура 25 оС, а не 20 оС вызовет постоянную температурную погрешность), а постепенный рост температуры в помещении от начала к концу рабочей смены приведет к переменной температурной погрешности. Кроме того, как бы мы ни старались поддерживать постоянную температуру, никакие технические устройства не обеспечат ее абсолютной стабильности в помещении. Невозможно полностью компенсировать воздействия ряда случайных факторов вне и внутри рабочего помещения (изменение теплообмена при движении воздушных масс, воздействии солнечных лучей, вносе и выносе деталей, перемещении операторов и заказчиков, включении и выключении приборов и т.д.). В результате возникают стохастические колебания температуры и случайно изменяющаяся составляющая температурной погрешности.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.