5 - Классификация погрешностей измерений (1093442), страница 3
Текст из файла (страница 3)
Обычно для описания и для аппроксимации систематической погрешности подбирают наиболее простую функцию, например линейную для прогрессирующей погрешности. Такой же упрощенный подход применяют и для аппроксимации гармонической систематической погрешности, которая может быть описана как синусоида, косинусоида, пилообразная либо другая периодическая функция.
Систематическая погрешность может иметь не только элементарный, но и более сложный характер, который можно аппроксимировать функцией, включающей приведенные простые составляющие.
s
s
s

Рис. 4. Виды простейших систематических погрешностей: а – постоянные, б, в – прогрессирующие (линейная и нелинейная), г, д – прогрессирующие нелинейные (предложены варианты аппроксимации прямыми линиями), е – периодические (гармонические).
Сложная систематическая погрешность, включающая постоянную, прогрессирующую и периодическую составляющую, в общем виде может быть описана выражением
s = a + b + dsin,
где a – постоянная составляющая сложной систематической погрешности;
, – соответственно аргументы прогрессирующей и периодической составляющих сложной систематической погрешности.
Стандартное определение случайной погрешности измерения в строгом смысле не является определением, поскольку содержит "порочный круг": составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины). Здесь опять использовано некорректное упоминание измерений одной и той же величины, а кроме того, содержится бессмысленная характеристика качества выполнения измерений («проведенных с одинаковой тщательностью»).
Случайными погрешностями в строгом смысле термина можно считать только те, которые обладают статистической устойчивостью (ведут себя как центрированная случайная величина). Причиной появления таких погрешностей чаще всего является совокупное действие ряда слабо влияющих дестабилизирующих факторов, связанных с любыми источниками погрешностей, причем функциональные связи этих факторов (аргументов) с погрешностями либо отсутствуют (в наличии только стохастические зависимости), либо не могут быть выявлены из-за неопределенности действующих факторов и большого их числа.
Погрешности, которые нельзя отнести ни к случайным, ни к систематическим из-за совершенно иного механизма образования и принципиально отличного значения, называют грубыми погрешностями измерений или промахами. Промах – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда.
"Определение" промаха сформулировано весьма неудачно, поскольку некорректным является упоминание "данных условий". Не является критерием понятие "резкого отличия", что оставляет значительные возможности для произвола. Ссылка на "условия измерения" создает впечатление связи грубой погрешности с единственным источником – нарушением нормальности условий измерения. Очевидно, что причинами возникновения грубой погрешности могут быть промах оператора при снятии отсчета или его записи, ошибка в реализации методики измерений, сбой в измерительной цепи прибора или незамеченное импульсное изменение влияющей физической величины. Причины появления результатов с грубыми погрешностями резко выпадают из ряда механизмов, формирующих систематические или случайные составляющие погрешности измерений.
В некоторых метрологических источниках грубые погрешности измерений относят к случайным, что соответствует вульгарной трактовке понятия случайности и маскирует различия механизмов возникновения собственно случайных и грубых погрешностей.
"Результат измерения с грубой погрешностью" фактически вызван ошибкой, допущенной при измерении. Такие погрешности в принципе непредсказуемы, а их значения невозможно прогнозировать с учетом вероятности как это делают для случайных погрешностей. Фактически к результатам с грубыми погрешностями относят либо такие, которые явно не соответствуют ожидаемому результату измерений (нелепые результаты), либо экстремальные значения, отличия которых от средних значений массива выражены не столь откровенно, но принадлежность которых к данному массиву результатов имеет весьма малую вероятность.
Отбрасывание (элиминация) результатов с грубыми погрешностями предупреждает возможность значительного искажения оценки результатов измерений. Исключение результатов может осуществляться либо цензурированием явно нелепых значений, либо статистическим отбраковыванием отдельных экстремальных результатов (подозрительных на наличие грубых погрешностей), которое основано на принципе практической уверенности. Применение этого принципа позволяет отбрасывать те значения, вероятность появления которых в исследуемом массиве данных меньше некоторого заранее выбранного значения.
По значимости все погрешности (составляющие и интегральные) можно делить на значимые и пренебрежимо малые. К пренебрежимо малым составляющим погрешностям относят погрешности, которые значительно меньше доминирующих составляющих. Формальное соотношение между пренебрежимо малой min и доминирующей max составляющими можно записать в виде
min << max.
Пожалуй, любую отдельную случайную или систематическую составляющую гарантированно можно отнести к пренебрежимо малым погрешностям, если она на порядок меньше доминирующей составляющей одной и той же интегральной погрешности. Пренебрежимо малые погрешности при объединении всех составляющих i в оценку интегральной погрешности практически не оказывают влияния на окончательный результат, что формально можно записать как
= 1* 2 *… *i *… *n 2 *…*i *… *n,
где 1 = min<< max.
Пренебрежимо малой интегральной погрешностью измерения можно считать такую, которая не является препятствием для замены истинного значения физической величины полученным результатом. В соответствии со стандартом за действительное значение физической величины принимают такое значение, которое получено экспериментально (в результате измерений) и настолько близко к истинному, что для данной задачи измерений может заменить истинное ввиду несущественности различия между ними
X дт Q,
где X дт – действительное значение физической величины;
Q – истинное значение физической величины.
Если различие между истинным значением физической величины Q и результатом ее измерения Xдт мы считаем пренебрежимо малым, можно записать дт 0,
где дт – погрешность измерения действительного значения физической величины.
Для одной и той же физической величины могут рассматриваться разные действительные значения. Близость их к истинному значению зависит от задачи, которая поставлена при измерении. Очевидно, что для установления годности объекта по заданному параметру точность измерения физической величины может быть значительно ниже, чем при исследовании точности технологического процесса обработки того же объекта или при сортировке однородных объектов на группы для последующей селективной сборки. Установление действительного значения измеряемой физической величины должно предваряться выбором допустимой погрешности измерений, которая и будет представлять собой предел пренебрежимо малого значения погрешности результата измерений.
В зависимости от режима измерения погрешности принято делить на статические и динамические. Статическая погрешность измерений (статическая погрешность) – погрешность результата измерений, свойственная условиям статического измерения. Динамическая погрешность измерений (динамическая погрешность) – погрешность результата измерений, свойственная условиям динамического измерения. При этом под статическим понимают измерение не изменяющейся по размеру, а под динамическим – изменяющейся физической величины.
Стандартные «определения» фактически только именуют, но не определяют статическую и динамическую погрешности измерений. Определения динамической погрешности средств измерений (динамическая погрешность) – погрешность средства измерений, возникающая при измерении изменяющейся (в процессе измерений) физической величины и статической погрешности средства измерений (статическая погрешность) – погрешность средства измерений, применяемого при измерении физической величины, принимаемой за неизменную, тоже непригодны для идентификации динамической погрешности. Поэтому метрологи, имеющие дело с динамическими погрешностями, вынуждены искать выход из сложившейся ситуации самостоятельно.
В соответствии с ранее действовавшим стандартом динамической погрешностью средства измерений называлась составляющая погрешности, дополнительная к статической, и возникающая при измерении в динамическом режиме. В соответствии с определением
дин = д.р – ст.р ,
где дин – динамическая погрешность средства измерения;
д.р – погрешность средства измерения при использовании его в динамическом режиме;
ст.р – статическая погрешность средства измерения (погрешность при использовании средства измерений в статическом режиме).
Динамический режим измерений (рис. 5) встречается не только при измерении изменяющейся величины, но и при измерении величины постоянной. И в том и в другом случаях возможна слишком высокая скорость "подачи информации" на средство измерений VQ (скорость изменения сигнала измерительной информации на входе средства измерений) которая оказывается соизмерима со скоростью преобразования измерительной информации VQ X и/или даже выше ее.
Например, в контрольно-сортировочных автоматах для измерения диаметров тел качения подшипников измеряется постоянная физическая величина – длина. Но из-за необходимости обеспечить высокую производительность автомата скорость изменения входного сигнала измерительной информации может оказаться выше скорости преобразования измерительной информации средством измерения. В таком случае из-за "запаздывания" с преобразованием сигнала возникают динамические погрешности (рис. 6).
Поскольку речь идет не столько о средствах измерений, сколько об их работе в специфическим режиме, динамическую погрешность не следует считать инструментальной. Эту погрешность нужно рассматривать более широко – как составляющую итоговой (интегральной) погрешности, обусловленную динамическим режимом измерений.
Q
X Q = f (T) Q = f (T)