Главная » Просмотр файлов » 5 - Классификация погрешностей измерений

5 - Классификация погрешностей измерений (1093442), страница 5

Файл №1093442 5 - Классификация погрешностей измерений (Лекции) 5 страница5 - Классификация погрешностей измерений (1093442) страница 52018-02-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

где Xmax и Xmin – наибольшее и наименьшее значения результатов измерений в серии.

Размах отклонений Re от среднего или произвольно выбранного значения, который равен размаху результатов измерений – из зависимости

Re = emax – emin,

где emax и emin – наибольшее и наименьшее отклонения результатов от некоторого фиксированного значения.


Х

* * * * *

* *

* * * Rn

* * *

* * * *


n

Рис. 8. Точечная диаграмма результатов многократных измерений одной ФВ.

Х i – результат измерения, n i – номер измерения, Rn – размах результатов измерений

Более строгими в математическом смысле оценками погрешностей можно считать среднее арифметическое значение погрешности в серии результатов, среднее квадратическое отклонение погрешности от фиксированного значения результата измерения, границы погрешности.

Средняя квадратическая погрешность результатов единичных измерений в ряду измерений (средняя квадратическая погрешность измерений; средняя квадратическая погрешность; СКП) – оценка рассеяния единичных результатов измерений в ряду равноточных измерений одной и той же физической величины около среднего их значения. В метрологической практике широко распространен термин среднее квадратическое отклонение (СКО) единичных результатов в ряду измерений от их среднего арифметического значения. Это отклонение иногда называют стандартной погрешностью измерений. Если в результаты измерений введены поправки для устранения систематических погрешностей, то отклонения от среднего арифметического значения можно рассматривать как случайные погрешности. В РМГ 29 – 99 предлагается для упорядочения совокупности терминов, родовым среди которых является термин «погрешность измерения», применять термин «средняя квадратическая погрешность». При обработке ряда результатов измерений, свободных от систематических погрешностей, СКП и СКО представляют собой одну и ту же оценку рассеяния результатов единич­ных измерений.

Границы погрешности могут быть определены как предельные значения или как доверительные границы с указанием вероятности попадания погрешности в указанный интервал. В качестве предельных значений или границ могут рассматриваться нижняя и верхняя границы (н и в либо – и +), значение модуля погрешности  (в случае если – = +) или значение модуля погрешности, равное большему из абсолютных значений – и +. Доверительные границы погрешности результата измерений (доверительные границы погрешности; доверительные границы) – наибольшее и наименьшее значения погрешности измерений, ограничивающие интервал, внутри которого с заданной вероятностью находится искомое (истинное) значение погрешности результата измерений.

Доверительные границы результата измерений при симметричном распределении вычисляются как , , где , средние квадратические погрешности, соответственно, единичного и среднего арифметического результатов измере­ний; t коэффициент, зависящий от доверительной вероятности Р и числа измерений п. При симметричных границах термин может приме­няться в единственном числе доверительная граница. Иногда вместо термина доверительная граница применяют термин доверительная погрешность или погрешность при данной доверительной вероятности.

Термин средняя квадратическая погрешность результата измерений среднего арифметического (средняя квадратическая погрешность сред­него арифметического; средняя квадратическая погрешность; СКП) введен вместо ранее применявшегося термина среднее квадратическое отклонение результата измерений. Значение этой оценки погрешности рассчитывается как СКО случайной погрешности среднего арифметического значения результата измерений одной и той же величины в данном ряду измере­ний по формуле

где Sсредняя квадратическая погрешность результатов единичных измерений, полученная из ряда равноточных измерений; п— число единичных измерений в ряду.

Предельная погрешность измерения в ряду измерений (предельная погрешность) – максимальная погрешность измерения (плюс, минус), допускаемая для данной измерительной задачи. За предельную погрешность часто принимают 3S, то есть пр=±3S.

Для оценки погрешности с учетом неисключенных систе­матических составляющих погрешностей их оценки объединяют с оценками случайных составляющих. Комплексную оценку называют суммарная средняя квадратическая погрешность результата измерений (суммарная погрешность результата; суммарная погрешность) – погрешность результата измерений (состоящая из суммы случайных и неисключенных систематических погрешностей, принимаемых за случайные). Комплексную оценку вычисляют по формуле

где – средняя квадратическая погрешность суммы неисключенных систематических погрешностей при равновероятном распределении (принимаемых за случайные).

Доверительные границы суммарной погрешности (x) могут быть вычислены по формуле

где ;  – граница суммы неисключенных систематических погрешностей результата измерений, вычисляемая по формулам

при числе неисключенных систематических погрешностей слагаемых N ≤ 3, или, при числе слагаемых погреш­ностей N ≥4

где К— коэффициент зависимости отдельных неисключенных систематических погрешностей от выбранной доверительной вероятности Р при их равновероятном распределении.

Одной из современных характеристик точности измерений является неопределенность измерений (неопределенность) – параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые можно приписать измеряемой величине. К определению, которое взято из VIM—93, приведены примечания, из которых следует, что параметром может быть стандартное отклонение (или число, кратное ему) или половина интервала, имеющего указанный доверительный уровень. Неопределенность, по мнению авторов документа, состоит (в основном) из мно­гих составляющих. Некоторые из этих составляющих могут быть оценены экспериментальными стандартными отклонениями в статистически распределенной серии результа­тов измерений. Другие составляющие, которые также могут быть оценены стандартными отклонениями, базируются, на данных эксперимента или другой информации.

Характеристики

Тип файла
Документ
Размер
200 Kb
Материал
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее