Курс лекций (1093149), страница 2
Текст из файла (страница 2)
Квадратный корень дисперсии называется стандартным отклонением: S= . Знание стандартного отклонения при условно принятой доверительной вероятности Р (обычно выбирают Р = 0,95) позволяет выражать найденные величины в виде некоторого интервала, называемого доверительным
Химические (классические) методы количественного анализа
Это гравиметрический и титриметрический методы. Хотя они постепенно уступают место инструментальным методам, они остаются непревзойденными по точности: их относительная ошибка меньше 0,2 %, тогда как инструментальных - 2-5 %. Они остаются стандартными для оценки правильности результатов других методов. Основное применение: прецизионное определение больших и средних количеств веществ.
Гравиметрический метод заключается в выделении вещества в чистом виде и его взвешивании. Чаще всего выделение проводят осаждением. Осадок должен быть практически нерастворимым. Определяемый компонент должен выделяться в осадок практически полностью, так чтобы концентрация компонента в растворе не превышала 10-6 М. Этот осадок должен быть по возможности крупнокристаллическим, чтобы его легко можно было промыть. Осадок должен быть стехиометрическим соединением определенного состава. При осаждении происходит захват примесей (соосаждение), поэтому его необходимо промывать. Затем осадок должен быть высушен и взвешен.
Применение гравиметрических методов:
Можно определить большинство неорганических катионов, анионов, нейтральных соединений. Для осаждения применяют неорганические и органические реагенты; последние более селективны. Примеры:
AgNO3+HCl=AgCl+HNO3
(определение серебра или хлорид-ионов),
BaCl2+H2SO4=BaSO4+2HCl
(определение бария или сульфат-ионов).
Катионы никеля осаждаются диметилглиоксимом.
Титриметрические методы используют реакции в растворах. Называются также волюмометрическими, так как основаны на измерении объема раствора. Заключаются в постепенном прибавлении к раствору определяемого вещества с неизвестной концентрацией раствора реагирующего с ним вещества (с известной концентрацией), который называется титрантом. Вещества реагируют между собой в эквивалентных количествах: n1=n2.
Так как n=CV, где С - молярная концентрация эквивалента, V- объем, в котором растворено вещество, то для стехиометрически реагирующих веществ справедливо:
C1V1=C2V2
Cледовательно, можно найти неизвестную концентрацию одного из веществ (например, C2), если известны объем его раствора и объем и концентрация прореагировавшего с ним вещества. Зная молекулярную массу эквивалента М, можно рассчитать массу вещества: m2=C2M.
Для того, чтобы определить конец реакции (который называется точкой эквивалентности), используют изменение цвета раствора или измеряют какое-либо физико-химическое свойство раствора. Используют реакции всех типов: нейтрализации кислот и оснований, окисления и восстановления, комплексообразования, осаждения. Классификация титриметрических методов дана в таблице:
Метод титрования, тип реакции | Подгруппы методов | Вещества титрантов |
Кислотно-основное | Ацидиметрия | HCl |
Алкалиметрия | NaOH, Na2CO3 | |
Оксилительно-восстановительное | Перманганатометрия | KmnO4 |
Иодометрия | I2 | |
Дихроматометрия | K2Cr2O7 | |
Броматометрия | KBrO3 | |
Иодатометрия | KIO3 | |
Комплексометрическое | Комплексонометрия | ЭДТА |
Осадительное | Аргентометрия | AgNO3 |
Титрование бывает прямое и обратное. Если скорость реакции мала, добавляют заведомый избыток титранта, чтобы довести реакцию до конца, а затем количество непрореагированного титранта определяют титрованием другим реагентом.
В основе кислотно-основного титрования лежит реакция нейтрализации, в ходе реакции изменяется рН раствора. График зависимости рН от объема титранта называется кривой титрования, обычно имеет вид:
Д

Комплексонометрия основана на реакции образования комплексов. Наиболее часто применяют этилендиаминтетрауксусную кислоту (ЭДТА )
(HOOC)(OOC-H2C)NH-CH2CH2-NH(CH2COO)(CH2COOH)
либо ее) динатриевую соль. Эти вещества часто называют комплексонами. Они образуют прочные комплексы с катионами многих металлов, поэтому применение для титрования требует разделения.
Окислительно-восстановительное титрование сопровождается изменением потенциала системы. Ход титрования контролируется обычно потенциометрическим методом, см. Позднее.
Осадительное титрование - чаще всего применяют аргентометрию как способ определения галогенид-ионов. Последние образуют с катионами серебра практически нерастворимый осадок.
Методы титриметрического анализа обладают высокой точностью(относительная погрешность определения - 0,1 - 0,3%), малой трудоемкостью, простотой аппаратурного оформления. Титриметрию применяют для экспрессного определения высоких и средних концентраций веществ в растворах, в том числе неводных.
Семинар 2. Физико-химические методы анализа. Атомная спектроскопия. Масс-спектрометрия. ЯМР и ЭПР.
Эти методы называют также инструментальными. Они позволяют определить состав исследуемых образцов, а также определить структуру веществ, не прибегая к химическим реакциям. Важнейшими преимуществами этих методов являются быстрота, высокая чувствительность, избирательность, возможность непрерывного контроля и автоматизации измерений. Эти преимущества в полной мере реализуются при решении проблем экологии, мониторинга окружающей среды.
Ни один из методов не является универсальным, поэтому для правильного выбора метода необходимо знать возможности методов, а также учитывать характер исследуемого объекта, наличие примесей, требуемую точность и избирательность. Во многих случаях необходимо предварительное концентрирование вещества в образцах.
2.1. Обзор спектроскопических методов
К спектроскопическим методам анализа относят физические методы, основанные на взаимодействии электромагнитного излучения (ЭМИ) с веществом. Воздействие ЭМИ на вещество приводит к переходам частиц между различными энергетическими уровнями. ЭМИ обладает двоякой природой - волновой и корпускулярной, и явления отражения и рассеяния удобно описывать в рамках волновой теории, а поглощение - корпускулярной. Волны характеризуются частотой (в Гц) или длиной волны в см), которые связаны между собой соотношением:
. =c/,
где с - скорость света (равная 3 108 м/с). Часто используют величину 1/называемую волновым числом Можно также характеризовать волны энергией испускаемого или поглощаемого кванта Е= h измеряемой в Дж или эВ.
ЭМИ может воздействовать на ядра, электроны или целые молекулы, вызывая переходы между соответствующими энергетическими уровнями. В таблице дан обзор диапазонов частот ЭМИ, соответствующих различным методам анализа.
Диапазон | м | (Гц) | (см-1) | Энергия квантов (eV) | Процесс |
Радиочастотный (ЯМР, ЭПР) | 101- 10-1 | | | 10-4-10-6 | Переходы ядерных или электронных спинов в постоянном магнитном поле |
Микроволновой | 10-1-10-3 | 1010 | 1 | 10-4 | Изменение вращательных состояний молекулы |
Оптический ИК ближний средний дальний | 1000 104 105 | 3 1014 3 1013 3 1012 | 104 103 102 | 1.3 0.13 0.013 | Изменение колебательных состояний молекулы |
Оптический видимый | (4-7) 10-7 | | | 2.6 | Переходы валентных электронов |
Оптический УФ | 10-8 | | | 13 | Переходы валентных электронов |
Рентгеновский | 10-8 - 10-10 | 3 1018 | 108 | 104 | Переходы внутренних электронов |
Гамма-излучение | 10-10 - 10-13 | 3 1020 | 1010 | 1.3 106 | Ядерные реакции |
Под спектром подразумевается функция распределения фотонов по энергиям, то-есть зависимость числа квантов, обладающих энергией ЕdE, от энергии Е. Графически электромагнитный спектр изображается в виде кривой, на оси абсцисс отложена величина, характеризующая энергию квантов, на оси ординат - интенсивность излучения или оптическая плотность.
Физико-химические методы анализа используют в основном оптический и радиочастотный диапазоны ЭМИ. Рассмотрим основные спектроскопические методы, применяемые для анализа.
2.2. АТОМНАЯ СПЕКТРОСКОПИЯ
Методы атомной спектроскопии позволяют определить элементный состав исследуемой пробы (набор присутствующих атомов) по спектрам поглощения или испускания света возбужденными атомами в оптическом и рентгеновском диапазоне. Атомные спектры наблюдаются в виде ярких цветных линий и возникают в результате переходов электронов с одного энергетического уровня на другие (рис.2.1); число уровней в отдельных атомах невелико и поэтому эти спектры дискретные, то-есть состоят из узких отдельных линий. Простейший атомный спектр наблюдается у атома водорода, он имеет наборы линий, называемые сериями: серия Лаймана в УФ-диапазоне, серия Бальмера в видимом диапазоне, серии Пашена, Брэкета, Пфунда и Хэмфри в ИК-диапазоне. Частоты линий спектра водорода можно рассчитать по разностям энергий соответствующих энергетических уровней. У других элементов может быть большее число спектральных линий, но они также узкие; каждый элемент характеризуется собственным набором линий.
Если анализируемая проба содержит ряд элементов, частоты всех линий можно измерить и сравнить с помощью ЭВМ со спектрами отдельных элементов, приводимых в справочниках. Таким образом осуществляется качественный анализ, а количественный основан на измерении интенсивности линий, которая прпопорциональна количеству находящегося в пробе элемента.
Поскольку энергетические уровни валентных электронов свободных атомов и атомов, входящих в состав молекул, заметно различаются, для получения атомных спектров необходима предварительная атомизация (деструкция) пробы, то-есть перевод ее в газообразное атомарное состояние.
2.2.1. АТОМНО-ЭМИССИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ
Пробу исследуемого вещества нагревают плазмой, электрической дугой или разрядом, в результате чего молекулы диссоциируют на атомы, которые частично переходят в возбужденное состояние, время жизни которого порядка 10-7-10-8 с, затем самопроизвольно возвращаются в нормальное состояние, испуская кванты света, дающие дискретный спектр испускания (эмиссии). Измерение частот испускаемых линий в спектре испускания и сравнение со спектрами отдельных элементов справочников позволяет определить, какие элементы содержатся в исследуемом образце. Количественный анализ основан на измерении интенсивностей отдельных линий спектра, так как интенсивность излучения растет с увеличением концентрации элемента. Необходима предварительная калибровка. Метод очень чувствителен.
Основные части атомного спектрографа изображены на блок-схеме
Источник возбуждения | Дисперсионный элемент | Рецептор |
Источником возбуждения может быть электрическая искра, дуга, аргоновая плазма или пламя. Температура электрической дуги 3000-7000О С, искры - 6000-12000ОС, плазмы - 6000-10000ОС. Температура пламени ниже - от 1500 до 3000ОС, поэтому в пламени атомизируются соединения не всех, а только некоторых элементов (щелочных, и др.). Дисперсионный элемент, разлагающий излучение в спектр - призма или дифракционная решетка. В качестве рецептора используется фотопластинка или фотоэлемент.
Этим методом можно определить более 80 элементов; чувствительность изменяется от 0,01% ( Hg, U) до 10-5% (Na, B, Bi).
Эмиссионная фотометрия пламени -
Разновидность атомной эмиссионной спектроскопии; исследуемое вещество вводится в виде аэрозоля в пламя газовой горелки. (Пример - желтый цвет пламени от NaCl). Поскольку температура пламени ниже, чем дуги или искры, возбуждаются атомы не всех элементов, а лишь имеющих низкую энергию возбуждения, такие как щелочные, щелочноземельные, а также Ga, In, Tl, Ag,Eu, Pb, Cu, Cr, Mn, Al и др. Атомизация происходит в пламени горелки. Метод очень чувствителен и позволяет обнаружить 10-7% по массе.
2.2.2. АТОМНО-АБСОРБЦИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ
Атомы поглощают излучаемые кванты на тех же частотах, которые испускают. Используется источник излучения с линейчатым спектром - лампа с полым катодом, на который нанесен определяемый элемент. Поэтому спектр излучения содержит линии анализируемого элемента. Исследуемое вещество обычно в виде раствора вводится в пламя горелки, где при температуре 2000 - 30000С происходит диссоциация молекул на атомы. Коэффициент поглощения газообразными атомами подчиняется экспоненциальному закону убывания интенсивности в зависимости от толщины поглощающего слоя и концентрации вещества. Определение концентрации производят с помощью калибровочных графиков, то-есть измеряют коэффициент поглощения для нескольких эталонных растворов с различными концентрациями определяемого элемента и строят график зависимости коэффициента поглощения от концентрации.