VVEDENIE (1093062), страница 9

Файл №1093062 VVEDENIE (Конспект лекций по курсу Физическая химия) 9 страницаVVEDENIE (1093062) страница 92018-02-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

I следствие. Производная в соответствии с уравнением Кирхгофа (3.26) равна алгебраической сумме теплоемкостей составных частей системы. Но , поэтому:

. (5.9)

Это означает, что при абсолютном нуле для конденсированных систем строго соблюдается правило Неймана - Коппа об аддитивности теплоемкостей.

Нернст пошел дальше и доказал, что не только алгебраическая сумма всех теплоемкостей равна нулю (5.9), но и теплоемкость каждого в отдельности конденсированного тела равна нулю:

. (5.10)

Ранее в главе II показано, что этот вывод находится в согласии с опытом и что он следует из квантовой теории теплоемкости.

II следствие. Согласно тепловой теории Нернста . Но , a , поэтому:

. (5.11)

Условие (5.11) показывает, что при любых процессах с конденсированными телами при абсолютном нуле температуры энтропия не изменяется. Это равносильно тому, что энтропии всех конденсированных тел при Т 0 одинаковы. М. Планк (1912 г.), расширяя теорему Нернста, предложил, что и для каждого конденсированного тела в отдельности:

, (5.12)

т. е. энтропия правильно образованного кристалла чистого вещества при абсолютном нуле температур равна нулю.

Формулировка М. Планка позволяет вычислять абсолютные значения энтропии, что открыло путь к широкому применению таблиц термодинамических функций для вычисления химических равновесий.

III следствие. Для того, чтобы найти величину const в уравнении (5.4) можно поступить следующим образом: уравнение вводится в уравнение (5.3):

.

Интегрирование в пределах от 0 до Т дает:

или

.

Полученное выражение идентично выражению (5.4), если положить, что . Но согласно уравнению Гиббса - Гельмгольца ():

, где .

Поэтому:

const = 0, (5.13)

что устраняет неопределенность в интеграле уравнения Гиббса - Гельмгольца (5.4) и позволяет получить истинные значения А = f (Т) для конденсированных систем.

Теорема Нернста непосредственно к газовым равновесиям неприменима. Поэтому для них она не может дать численного значения const в уравнении Гиббса - Гельмгольца (5.4).

Однако косвенным путем она дает важные сведения. Оказывается, что величина const интегрирования в уравнении изобары химической реакции:

равна алгебраической сумме истинных химических постоянных продуктов химической реакци:

, (5.14)

что позволяет вычислять химическое сродство при различных температурах для газовых равновесий.

4. Расчет абсолютных значений энтропии.

Ранее были получены уравнения, позволяющие вычислять изменение энтропии по известным изменениям параметров системы и известным теплоемкостям.

Формулировка Планка (5.12) позволяет вычислять абсолютное значение энтропии конденсированных веществ, так как в этом случае необходимость выбора условного начала отсчета этой функции отпадает. В самом деле, если рассматриваемое вещество при температуре Т находится в кристаллическом состоянии и в той же модификации, что и при абсолютном нуле, то его энтропия определится следующим образом:

, a dq = CdT, тогда

или окончательно

, т. к. S0 = 0.

Если же в интервале (0 - Т) К вещество при температуре ТФ.П переходит из одной формы в другую, то следует учесть возрастание энтропии данного фазового перехода согласно уравнению (4.47), которое составит:

,

где qФ.П. - энергетический эффект фазового перехода.

Для примера: рассчитать энтропию газообразного вещества при температуре Т, если при температуре ТS оно плавится с энергетическим эффектом , а при температуре ТЕ переходит в газообразное состояние, причем энергетический эффект этого перехода . При температуре происходит полиморфное превращение с энергетическим эффектом .

Тогда энтропия вещества при температуре Т определится из выражения:

, (5.15)

где СР( ) - теплоемкость - модификации вещества;

СР( ) - теплоемкость - модификации вещества;

СР(Ж) - теплоемкость вещества в жидком состоянии;

СР(Г) - теплоемкость вещества в газообразном состоянии.

Таким образом можно определить абсолютное значение энтропии веществ в различных состояниях и при любых температурах.

Хотя абсолютное значение энтропии можно определить аналитически с помощью теоретических или эмперических зависимостей С = f (Т), но более надежным является графический метод расчета, тем более что он является и наиболее удобным.

Для этой цели обычно строятся кривые в координатах или СР - lnТ (рис. 5.2).

Рис. 5.2. Графический метод определения абсолютного значения энтропии по зависимости СР = f (lnT).

Площадь, ограниченная кривой, осью абцисс и ординатой при заданной темепературе (Т или lnT) соответствует энтропии при данной температуре за вычетом энтропии фазовых переходов.

Определение абсолютного значения энтропии можно произвести и другими методами. Можно, например, использовать спектральные данные и данные о строении молекул. Полное согласие между результатами определения энтропии этиим двумя методами доказывает справедливость постулата Планка и, в частности, указывает на надежность этих методов.

5. Применение таблиц термодинамических

функций для расчетов равновесий.

Этот метод расчета широко используется для вычисления энергетических эффектов химических реакций, констант равновесия химических реакций и т. д. Главное достоинство метода состоит в том, что та часть вычислений, которая требует много времени и является источником наибольших ошибок, сделана единожды и с возможно большей точностью. То, что остается вычислить сверх табличных данных носит большей частью характер поправок, нахождение которых не требует высокой точности и допускает использование разумных приближений.

Обычные таблицы содержат величины:

- изменения энтальпии при образовании одного моля вещества в стандартных условиях ( );

- изменения энергии Гиббса образования одного моля вещества в стандартных условиях ( );

- абсолютных значений энтропии, в расчете на 1 моль вещества в стандартных условиях ( );

За стандартные условия принято считать температуру 25 0С и давление 1,01 105 Па.

Все подсчеты по таблицам основаны на свойствах аддитивности G, H и S, поэтому сводятся к простому алгебраическому суммированию. аналогичному расчетам по закону Гесса. Так, изменение энтальпии реакции Н равно алгебраической сумме изменений энтальпий образования продуктов реакции. Это относится к G и S реакции. При этом следует иметь в виду, что Н и G простых веществ равны нулю, поэтому в таблицах не приводятся.

Таблицы термодинамических функций в стандартных условиях позволяют рассчитать G, H и S реакции только в стандартных условиях. Для нахождения этих величин при любой температуре учитывается их зависимость от температуры.

Например для расчета энергетического эффекта химической реакции используется уравнение Кирхгофа:

, (5.16)

где - изменение энтальпии реакции при Т = 298 К;

СР - алгебраическая сумма теплоемкостей продуктов реакции;

- изменение энтальпии реакции при температуре Т, причем .

Для определения изменения энтропии реакции используется выражение;

, (5.17)

где - изменение энтропии реакции при Т = 298 К;

- изменение энтропии реакции при температуре Т.

Если уравнения (5.16) и (5.17) ввести в уравнение:

,

то получается:

,

или

. (5.18)

По величине согласно уравнению стандартного сродства - = RTlnkP можно рассчитать величину kP для любой температуры:

. (5.19)

Уравнения (5.18) и (5.19) позволяют вычислять и kP из термохимических данных. В зависимости от характера возникающих практических вопросов в использовании метода расчета вносятся изменения, упрощающие или уточняющие расчеты.

Следует заметить, что ряд важнейших технологических процессов металлургической практики основан на результатах подобных и аналогичных расчетов. Более того, физическая химия металлургических процессов основана на использовании этих расчетов для анализа схем получения металлов и их сплавов из руд.

Приближения Улиха.

Первое приближение заключается в том, что СР = 0, т. е. считается, что протекающая реакция не сопровождается изменением теплоемкости системы. Тогда уравнение (5.18) принимает вид:

. (5.20)

Второе приближение используется тогда, когда нет возможности возпользоваться температурной зависимостью теплоемкости. В этом случае СР = а, где а выбирается на основе приблизительной оценки теплоемкостей при комнатной температуре.

Характеристики

Тип файла
Документ
Размер
1,66 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее